Supplemental seal for the chordal hinge seals in a gas turbine

Seal for a joint or juncture – Seal between relatively movable parts – Close proximity seal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C277S543000, C277S637000, C277S653000, C415S174200, C415S191000

Reexamination Certificate

active

06637751

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to seals in a gas turbine for supplementing the chordal hinge seals between turbine nozzles and a turbine nozzle support ring and particularly relates to supplementary seals for substantially minimizing or eliminating leakage losses past the chordal hinge seals.
In a gas turbine, hot gases of combustion flow from combustors through first-stage nozzles and buckets and through the nozzles and buckets of follow-on turbine stages. The first-stage nozzles typically include an annular array or assemblage of cast nozzle segments each containing one or more nozzle stator vanes per segment. Each first-stage nozzle segment also includes inner and outer band portions spaced radially from one another. Upon assembly of the nozzle segments, the stator vanes are circumferentially spaced from one another to form an annular array thereof between annular inner and outer bands. A nozzle retaining ring coupled to the outer band of the first-stage nozzles supports the first-stage nozzles in the gas flow path of the turbine. An annular nozzle support ring, preferably split at a horizontal midline, is engaged by the inner band and supports the first-stage nozzles against axial movement.
In an exemplary arrangement, eighteen cast segments are provided with two vanes per segment. The annular array of segments are sealed one to the other along adjoining circumferential edges by side seals. The side seals seal between a high pressure region radially inwardly of the inner band, i.e., compressor discharge air at high pressure, and the hot gases of combustion in the hot gas flow path which are at a lower pressure.
Chordal hinge seals are used to seal between the inner band of the first-stage nozzles and an axially facing surface of the nozzle support ring. Each chordal hinge seal includes an axial projection which extends linearly along a chord line of the inner band portion of each nozzle segment. Particularly, the chordal hinge seal extends along an inner rail of each segment and which rail extends radially inwardly of the inner band portion. The chordal hinge seal projection lies in sealing engagement with the axially opposite facing sealing surface of the nozzle support ring.
During operation and/or repair of the first-stage nozzle, it has been found that warpage can leave gaps between the chordal hinge seals and the sealing surface of the nozzle support ring. These gaps enable leakage past the chordal hinge seals from the high pressure area radially within the annular inner band into the hot gas flow path. That is, the chordal hinge seals are inadequate to prevent leakage flow as the chordal hinge seal projections lose contact with the sealing surface of the nozzle support ring. Consequently, there is a need for a supplemental seal at the interface of the first-stage nozzles and nozzle support ring to minimize or eliminate the leakage flow past the chordal hinge seals.
BRIEF DESCRIPTION OF THE INVENTION
In accordance with a preferred embodiment of the present invention, there is provided a supplemental seal between the first-stage nozzles and the nozzle support ring which eliminates or minimizes leakage past the chordal hinge seals and which is readily and easily installed. In a preferred embodiment, the supplemental seal includes at least one and preferably two back-to-back sheet metal shims wrapped in a woven metallic cloth attached to the inner radial margin of the inner rail of each nozzle segment. The supplemental seal extends from the inner rail for engagement against a first surface of the nozzle support ring at a location radially inwardly of the chordal hinge seal. The high pressure compressor discharge air in a high pressure region of the turbine biases the cloth seal against the annular surface of the nozzle support ring.
Particularly, the cloth seal and shims are secured along the back side of a support bracket. The radial outer edge of the support bracket and cloth seal and shims are secured in a groove formed along the inner margin of the inner rail. The seal extends arcuately in a circumferential direction and is provided in two or four circumferential segments 90° or 180°, respectively. Because the nozzle segments are in excess of the number of circumferential supplemental seals, the supplemental seal segments overlie multiple nozzle segments, particularly at the joint between segments, thereby reducing inter-segment leakage. Alternatively, the inter-segment gaps between segments can be axially overlaid with overlapped joints of the supplemental seal.
The cloth and shims are shaped to project radially inwardly, turn in an axial direction toward the nozzle support ring and turn again in a radial inward direction to form distal legs on the inner end portions of the seal. The legs of each shim are slit back from their distal edge to form a plurality of fingers. The fingers of one shim overlie the slits of the fingers of the other shim. That is, the slits of the shims are staggered in a circumferential direction relative to one another such that the slits of each shim are effectively sealed by the fingers of the opposing shim. The slits also afford flexibility to the sealing surface of the supplemental seal.
In a preferred embodiment according to the present invention, there is provided a turbine comprising a turbine nozzle support ring having a generally axially facing first surface, a turbine nozzle segment having at least one stator vane and including an inner band having a second surface in axial opposition to the first surface, a seal depending from and extending radially inwardly of the inner band for sealing engagement against the first surface to seal between high and low pressure regions on opposite sides of the seal, the seal including a seal body having at least a first plate, an overlay of a woven metallic cloth and a distal margin covered by the cloth and engaging the first surface and a support bracket secured to the inner band and extending along one side of the seal to support the seal body on a low pressure side thereof, the margin of the seal body being flexible and preloaded to seal against the first surface.
In a further preferred embodiment according to the present invention, there is provided a turbine comprising a turbine nozzle support ring having a generally axially facing first surface, a plurality of turbine nozzle segments each having at least one stator vane and including an inner band having a second surface in axial opposition to the first surface, a seal comprised of a plurality of seal segments depending from and extending radially inwardly of the inner bands for sealing engagement against the first surface to seal between high and low pressure regions on opposite sides of the seal, each seal segment including a seal body having at least a first plate, an overlay of a woven metallic cloth and a distal margin covered by the cloth and engaging the first surface and a plurality of support brackets secured to the inner bands and extending along one side of the seal segments to support the seal bodies on a low pressure side thereof, the margins of the seal bodies being flexible and preloaded to seal against the first surface.


REFERENCES:
patent: 4645217 (1987-02-01), Honeycutt et al.
patent: 4863343 (1989-09-01), Smed
patent: 5118120 (1992-06-01), Drerup et al.
patent: 5224822 (1993-07-01), Lenahan et al.
patent: 5474306 (1995-12-01), Bagepalli et al.
patent: 5509669 (1996-04-01), Wolfe et al.
patent: 5586773 (1996-12-01), Bagepalli et al.
patent: 5657998 (1997-08-01), Dinc et al.
patent: 5797723 (1998-08-01), Frost et al.
patent: 5915697 (1999-06-01), Bagepalli et al.
patent: 5934687 (1999-08-01), Bagepalli et al.
patent: 6162014 (2000-12-01), Bagepalli et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Supplemental seal for the chordal hinge seals in a gas turbine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Supplemental seal for the chordal hinge seals in a gas turbine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supplemental seal for the chordal hinge seals in a gas turbine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3171648

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.