Online monitor for polymer processes

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Automatic analytical monitor and control of industrial process

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S068100, C422S082010, C422S082020, C422S082050, C422S082060, C422S082070, C422S082080, C422S082090, C436S034000, C436S043000, C436S052000, C436S085000

Reexamination Certificate

active

06635224

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to an online monitor for the continuous determination of the status of a polymer containing process stream through the measurement of polymer molecular weight and/or size and the measurement of composition and concentration of selected species such as monomers and endgroups. The monitor is used, inter alia, to detect the reaction endpoint of a polymer manufacturing process, to monitor polymer quality in a polymer containing process stream, or to perform polymer characterization in an industrial or laboratory setting.
Polymers are formed by a number of reactions, all of which involve the addition or condensation of monomers or other polymer blocks onto growing chains of repeating units. To illustrate, the formation of a polyester is depicted in the following reaction.
n
HOROH+
n
HOOCR′COOH→H—(—ORO—CO—R′—CO—)
n
—OH+(2
n
−1)H
2
O
The degree of polymerization is represented by the number of repeating units in the chain, which is the integer n in the above reaction. Whether a polymer chain is formed by step-growth polymerization or chain-growth polymerization, the resulting polymers consist of a mixture of polymer molecules with a distribution of molecular weights. The average molecular weight and molecular weight distribution and/or the average size and size distribution of a polymer can be determined by gel permeation chromatography (GPC). For simplicity in the following discussion, the term “MWR” will be taken to mean the following: “weight average molecular weight or molecular size”. Thus, the polymer MWR can be determined by GPC. Basic concepts in polymer science and technology are thoroughly reviewed by J. P. Flory, in Principles of Polymer Chemistry, Cornell University Press, 1953.
Polymer MWR can also be determined by techniques such as light scattering, viscosity, osmometry and freezing-point depression (unless noted otherwise, the term light scattering refers to steady state light scattering, as distinguished from dynamic light scattering.). For example, viscosity can be used to determine the polymer MWR of solutions of such polymers as polyesters and proteins or DNA. However, for a dispersed two-phase mixture such as an interfacial process polycarbonate reaction mixture, the solution viscosity is also dependent on the water/organic solvent ratio, the temperature, and the reactor agitation rate, which introduces inaccuracies into this method.
For biological polymers, determination of polymer MWR by viscosity measurement is not preferred. DNA is easily damaged and broken by the type of handling normally associated with viscosity measurements. For protein solutions, viscosity is only accurate for proteins in a random coil configuration. Secondary structure and the degree of denaturation of the protein affect the viscosity of the protein solution, which also depends on such factors as the solution pH, temperature, shear forces, intra- and intermolecular bonding and other factors, making viscosity a highly unreliable method for many types of biological polymers. The molecular weight of biopolymers has been determined in the laboratory by techniques such as SDS-gel electrophoresis, density gradient sedimentation, thin-layer gel chromatography, and viscoelasticity (relaxation time).
Polymer MWR is one of the most important factors that affect polymer properties. For many engineering thermoplastic polymers, as the polymer MWR increases, the mechanical properties of the polymer improve. For example, tensile strength, impact resistance, ductility, and other physical properties of the polymer are all improved with increasing polymer MWR. However, as the polymer MWR increases, the melt viscosity also significantly increases. When the melt viscosity becomes too high, melt processing the polymer becomes difficult or nearly impossible.
In polymer synthesis, the endpoint of a polymerization reaction can be defined as the point at which the polymer meets the desired specifications for all intrinsic polymer properties such as polymer MWR, dispersity, residual endgroup concentration(s), and residual monomer composition and concentration(s). To ensure that a polymerization reaction achieves its endpoint, one should have timely information about these intrinsic polymer properties, or the reaction process conditions such as pH, viscosity, temperature or pressure that are related to the intrinsic polymer properties, or a combination of both. The apparatus of this invention allows online monitoring of the following intrinsic polymer properties: polymer MWR and the concentration(s) of residual monomer(s) and/or endgroups.
In a polymerization reaction, polymer MWR is often the most important intrinsic polymer property to be achieved. In many cases, polymer MWR alone is sufficient to determine the polymerization reaction endpoint. However, in other cases, the reaction endpoint is defined by a specified polymer MWR and by other parameters such as the concentrations of residual monomer and/or endgroups. In such cases, the reaction endpoint must be determined with polymer MWR monitoring plus one or more additional measurements.
For example, for an interfacial polycarbonate manufacturing process, both polymer MWR and residual bisphenol-A (BPA) concentration are important quality parameters. Although a low level (<100 ppm) of BPA monomer in a polycarbonate reaction mixture has no significant effect on the polymer MWR, the presence of this level of monomer can influence the polymer quality and possibly limit its use in certain applications. Therefore, it is often desirable to include both polymer MWR and residual BPA concentration in the definition of the reaction endpoint for a polycarbonate polymerization reaction.
There are many physical and chemical properties of the reaction mixture besides the polymer MWR that change during the course of a polymerization. Current methods for detecting the reaction endpoint are based on one or more of these properties. For example, there are techniques that are based on the heat released during the reaction, decreases in the concentration of monomer, increases in the concentration of the byproducts of the reaction, the occurrence of wasteful side reactions, pH changes, droplet size (in interfacial polymerizations), decreases in end group concentrations, colorimetric assays, and light transmission through the reaction mixture.
For example, several techniques have been developed for detecting the reaction endpoint in interfacial polycarbonate polymerization, as reviewed by Silva and Fyvie in U.S. Pat. No. 5,114,861, which is incorporated herein by reference. These techniques include monitoring the heat release per unit phosgene delivered and monitoring the carbonate ion level in the reaction mixture. Both of these methods are based on detecting the effects of phosgene hydrolysis, a wasteful side reaction that occurs primarily after the polymerization is substantially complete. These techniques have two principal drawbacks. First, they require significant phosgene hydrolysis to occur before a clear endpoint signal can be detected. This means that significant losses in both raw materials and time must occur before the reaction is terminated. Secondly, significant phosgene hydrolysis can occur prior to the true reaction endpoint, due for example to an incorrect catalyst level. This can cause a false endpoint, which would lead to premature termination of the reaction, resulting in low quality polymer.
Attempts have also been made to monitor droplet size and the related dispersion properties by acoustic, focused beam reflectance, and dynamic scattering techniques. These methods have not succeeded because droplet size relates not only to the polymer MWR, but also many to other operational variables such as temperature, agitation rate, the volume ratio of aqueous and organic solvents and others. These factors can not always be completely controlled, which can lead to erroneous results.
U.S. Pat. No. 5,114,861 describes a method of reaction endpoint detection for interfacial polycarbonate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Online monitor for polymer processes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Online monitor for polymer processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Online monitor for polymer processes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162507

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.