Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2001-07-17
2003-06-17
Tolin, Gerald (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C257S785000, C439S066000, C439S084000
Reexamination Certificate
active
06580613
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to electronic component and printed circuit board (PCB) assemblies. More particularly, the present invention relates to an electronic component assembly which does not require solder to secure conductive terminals of one or more electronic components to conductive traces of an associated printed circuit board.
BACKGROUND OF THE INVENTION
Traditional printed board assemblies include integrated circuits (ICs) and other electronic components soldered to conductive traces of an associated printed circuit board. While solder has proved to be effective in some respects for connecting electronic components to a printed circuit board and for transmitting current from an associated power source to such electronic components, there are various problems associated with the use of solder.
One significant problem is that soldered electronic components are exposed to very high temperatures during the soldering process. Thus, the electronic components are subjected to substantial temperature stress, which may cause immediate or future performance failures. In order to minimize such failures, soldered ICs are subjected to various manufacturing and quality assurance procedures, which are complex and costly.
Quality assurance inspections often require that each solder joint be inspected multiple times during the process of manufacturing a printed circuit board. For example, one such inspection may be required to assure that the solder joint connecting a conductive terminal of a electronic component to a conductive trace of a printed circuit board has been properly formed and does not include any voids. Another inspection step may be required after the associated PCB assembly has been completed to assure that flux used during the soldering process has been removed during preliminary or final cleaning operations.
Another problem associated with soldered electronic components is that solder must be removed (i.e., the electronic component must be de-soldered) in the event of a failure or when it is desired to upgrade the component. The de-soldering process exposes electronic components on the associated PCB to additional temperature stresses and cleaning procedures. In the event a new component is re-soldered in place of the failed component, again the risk associated with high temperature stress exists and additional quality control inspections and cleaning procedures are required.
In order to avoid the potential problems and cost associated with the use of solder, substantial efforts have been made to develop procedures for solder-free connections of conductive terminals of electronic components to conductive traces of PCBs. One such effort involves staking of the conductive terminals of associated electronic components into plated through-holes of an associated PCB. This process requires special solderless pins to be used as conductive terminals of the electronic components. Several problems exist with staking procedures including increased costs, increased manufacturing steps, incompatibility of materials and electronic component failures due to mechanical stresses exerted thereon during the staking process.
Accordingly, the existing procedures and assemblies having soldered and solderless connections have various shortcomings. The need therefore exists for a new electronic component assembly that overcomes the existing problems.
SUMMARY OF THE INVENTION
The present invention overcomes the shortcomings in the prior art by providing an electronic component assembly that does not need or use solder to connect conductive terminals of one or more associated electronic components to conductive traces of an associated PCB. In one embodiment, the electronic component assembly comprises a PCB having conductive traces thereon. A frame having at least one compartment therein may be secured to the PCB. At least one electronic component having conductive terminals thereon is retained in at least one compartment of the frame such that the conductive terminals thereof are aligned and in contact with the conductive traces of the PCB. No solder is required in this assembly to retain the conductive terminals of the electronic component in contact with the conductive traces of the PCB.
Preferably, the assembly comprises a heatsink arranged in contact with at least one electronic component thereof. The heatsink may be arranged on the frame and may be used to retain at least one electronic component within the frame compartment such that the conductive terminals thereof are retained in contact with the corresponding traces of the PCB. In one embodiment, the heatsink may be generally u-shaped. In other embodiments, the heatsink may have any configuration suitable for maintaining it in contact with one or more electronic components within the frame.
It is preferable for the conductive terminals of the at least one electronic component to extend vertically outward toward the conductive traces of the PCB. The assembly may include adhesive composition used to secure the electronic components to the frame. The frame may be secured to the associated PCB in various ways, including, but not limited to, adhesives, rivets, screws, clamps and other mechanical means.
In a preferred embodiment, the at least one electronic component comprises a plurality of electronic components and the at least one frame compartment comprises a plurality of compartments, where each electronic component is retained in a respective compartment.
The frame may comprise a shoulder within each compartment. The electronic components preferably include a die and conductive terminals extending outwardly from the die. The die may be arranged to abut the shoulder within the compartment when the electronic component is in assembled position. In the embodiment where a shoulder is included within a frame compartment, it is preferable for the shoulder to comprise opposing shoulders, and for the die of the electronic component to abut the opposing shoulders when the electronic component is arranged in assembled position.
As the electronic component assembly of the present invention does not require the use of solder, it is preferable for the conductive terminals of the electronic components to be constructed to deform from a first elongated configuration to a second compressed configuration upon application of a sufficient force thereto whereby the conductive terminals are maintained in contact with the conductive traces of the associated PCB.
In another embodiment of the present invention, the electronic component assembly does not specifically include an associated PCB, but is intended to be mounted on a PCB. Preferably, the electronic component assembly comprises a frame, which is adapted to be secured to a PCB. One or more electronic components are also provided, each having conductive terminals thereon. The frame defines one or more compartments in which corresponding ones of the electronic components are retained.
The electronic component assembly may also comprise a heatsink arranged in contact with the electronic components thereof. The heatsink is preferably arranged on the frame and functions at least, in part, to either dissipate heat away from the electronic components or to retain the electronic components within corresponding frame compartments. In one embodiment, the heatsink may have a unshaped configuration.
In accordance with another aspect of the invention, a method of assembling an electronic component assembly is provided. In one embodiment, the method comprises attaching a frame to a PCB. At least one electronic component is then inserted into a corresponding compartment of the frame in a position such that conductive terminals thereof are placed in contact with conductive traces of the PCB. A heatsink device is then placed on the frame in contact with at least one electronic component to secure the electronic components in assembled position.
In accordance with another method of the present invention, one or more electronic components may first be inserted corresponding compartments o
Lerner David Littenberg Krumholz & Mentlik LLP
Tolin Gerald
LandOfFree
Solder-free PCB assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Solder-free PCB assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solder-free PCB assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3162161