Method for driving at least one inductive load using pulse...

Modulators – Pulse or interrupted continuous wave modulator – Pulse width modulator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C363S061000, C363S140000, C318S701000, C318S254100, C307S011000

Reexamination Certificate

active

06667667

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method for driving at least one inductive load (consumer) using pulse width modulated control signals of a semiconductor output stage, the control pulses connecting the load to and disconnecting it from a d.c. supply voltage.
BACKGROUND INFORMATION
Electrical loads may be driven using pulse width modulated control signals in electrical or electronic circuits. In this context, the electrical load may be connected to or disconnected from a voltage source via a semiconductor switch, in correspondence with the pulse duty factor (control pulse to interpulse period).
If a plurality of loads driven by a pulse width modulated control signal are connected in a circuit, e.g., in the case of clocked output stages of electromotors in a motor vehicle, the result may be high starting (transient) current pulses and circuit-breaking (transient) current pulses that may result in an a.c. voltage superimposed on the d.c. supply voltage. This can already occur when large load currents are switched, and the d.c. supply voltage is not powerful enough, which is may be the case for batteries as vehicle electrical systems in motor vehicles. This a.c. voltage superimposed on the d.c. supply voltage may affect the functioning of all of the loads connected to the d.c. supply voltage.
German Published Patent Application No. 197 25 708 and Published PCT Application No. WO 88/10367 may indicate or refer to a method for driving electrical loads in which, when switching relatively large loads, they can be switched on and off with time displacement such that the current rises and decreases virtually continuously when switching on and off. As a result, the formation of an a.c. voltage superimposed on the d.c. supply voltage may only be weakened, yet may not be prevented in practice, particularly when the loads are inductive loads to which current is applied block-by-block, as may be the case for pulse width modulated, electronically commutable motors.
An excitation winding of such a motor may be driven via a circuit including two semiconductor switches and two diodes. Connected in parallel to the d.c. supply voltage is a capacitor that, after the switching off (operation), partially takes up the magnetic energy stored in the excitation winding. This capacitor forms a resonant circuit with the line inductance. When the motor is in operation, current is applied in succession to the excitation windings, a current limit being reached by clocking the semiconductor switch.
As a result of the magnetic energy stored in the excitation winding, the motor current then continues to flow in the free-running circuit, so that no additional current is taken up from the d.c. supply voltage. This “hard” switching on and off causes the current in the supply line and in the d.c. supply voltage to change particularly quickly and in a pulsed manner, which, due to the previously indicated resonant circuit among other things, results in the formation of an a.c. voltage superimposed on the d.c. supply voltage.
SUMMARY OF THE INVENTION
It is an object of the exemplary embodiment and/or exemplary method of the present invention to create a method for driving an inductive load using pulse width modulated control signals of the species recited at the outset that simply and inexpensively prevents the formation of an a.c. voltage superimposed on the d.c. supply voltage, or that keeps the amplitude of this a.c. voltage as low as possible.
According to the exemplary embodiment and/or exemplary method of the present invention, this object may be achieved in that a supplementary device including a storage capacitor and/or storage inductor including a semiconductor switch is allocated to the PWM control unit, and in that, in the interpulse periods of the PWM control signals, the semiconductor switch controlled by the PWM control unit energizes one charging current circuit powered by the d.c. supply voltage for the storage capacitor and/or the storage inductor.
In this driving (action), the d.c. supply voltage is additionally loaded in the interpulse periods by the charging current of the storage capacitor and/or of the storage inductor, so that only slow current changes, via which other loads connected to the d.c. supply voltage cannot be affected, can occur as a function of the power consumption at the d.c. supply voltage.
In this context, the charging current circuit can partially extend beyond both the start and end of the interpulse periods into the subsequent control pulses of the PWM control signals. This may result in improved load compensation of the d.c. supply voltage.
According to one exemplary embodiment and/or exemplary method, the charging current circuit can be adapted such that it takes up a charging current that is adjusted to the current of the load in such a manner that an approximately constant power requirement from the d.c. supply voltage results via the PWM operation.
If the exemplary embodiment and/or exemplary method is applied to electronically commutated motors, provision can be made according to one exemplary embodiment and/or exemplary method for one shared supplementary device including a storage capacitor and/or a storage inductor to be assigned, in an electronically commutable motor, to every semiconductor output stage having the loads configured as excitation windings, whose (the supplementary device's) semiconductor switch switches on the charging current circuit in all interpulse periods of all PWM control signals of the PWM control unit.
In this context, the driving (action) takes place such that the shared supplementary device has a storage inductor that is switched like the semiconductor output stages and the loads of the electronically commutated motor configured as excitation windings and can be driven by the PWM control unit, the semiconductor switch of this supplementary device switching on the storage inductor in every interpulse period of the PWM control signals, however.
In the case of an electronically commutated motor, the exemplary embodiment and/or exemplary method can be also carried out in such a manner that, for an electronically commutated motor, every semiconductor output stage having the loads configured as excitation windings is assigned its own supplementary device including a storage capacitor and/or storage inductor, and whose semiconductor switch only switches on the charging current circuit of the assigned supplementary device in the interpulse periods of the PWM control signals supplied to the semiconductor output stage, the charging current circuit being controlled such that every semiconductor output stage having the loads configured as excitation windings is assigned a storage capacitor as its own supplementary device, which can be switched via diodes and the appropriate semiconductor output stage in such a manner that it is charged in the interpulse periods of the supplied PWM control signals.


REFERENCES:
patent: 5563487 (1996-10-01), Davis
patent: 24 51 477 (1976-05-01), None
patent: 197 25 708 (1999-01-01), None
patent: 0 911 956 (1999-04-01), None
patent: 59 106897 (1984-10-01), None
patent: WO 88/10367 (1988-12-01), None
Patent Abstract of Japan, vol. 8, No. 226, Oct. 17, 1984.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for driving at least one inductive load using pulse... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for driving at least one inductive load using pulse..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for driving at least one inductive load using pulse... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3160416

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.