Human lysosomal protein and methods of its use

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S350000

Reexamination Certificate

active

06638712

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the identification of a gene (CLN2) which, when mutated, results in the neurodegenerative disease classical late infantile neuronal ceroid lipofuscinosis (LINCL). CLN2 encodes a pepstatin-insensitive carboxyl protease which is a 46 kDa lysomal protein that is absent or mutated in LINCL. Thus, the invention provides the protease (CLN2), nucleic acids encoding CLN2, oligonucleotides specific for such nucleic acids, antibodies to CLN2, and methods for restoring the activity of CLN2 to ameliorate the symptoms of LINCL. Various diagnostic and therapeutic aspects of the invention particularly relate to detection and treatment of LINCL.
BACKGROUND OF THE INVENTION
The neuronal ceroid lipofuscinoses (NCLs) are a group of closely related hereditary neurodegenerative disorders which affect infants, children and adults, and which occur at a frequency of between 2 and 4 in 100,000 live births (1, 2). Most forms of NCL afflict children and their early symptoms and disease progression tend to be similar. Initial diagnosis is frequently based upon visual problems, behavioral changes and seizures. Progression is reflected by a decline in mental abilities, increasingly severe and untreatable seizures, blindness and loss of motor skills while further progression can result in dementia or a vegetative state. There is no effective treatment for NCL and all childhood forms are eventually fatal. Several forms of NCL are differentiated according to age of onset, clinical pathology and genetic linkage. These include infantile NCL (INCL, CLN1), classical late infantile NCL (LINCL, CLN2), juvenile NCL (JNCL, CLN3) adult NCL (CLN4), two variant forms of LINCL (CLN5 and CLN6) and possibly other atypical forms (1,3). The molecular bases for two of these forms of NCL have recently been identified by positional cloning. Mutations in palmitoyl protein thioesterase (PPT), which removes the lipid moiety from acylated proteins, results in INCL (4). JNCL results from mutations in the CLN3 gene product, a 48 kDa protein of currently unknown function (5). The identity of the molecular lesion in LINCL has remained elusive although the disease gene has recently been mapped to chromosome 11p15 by genetic linkage analysis (3). There are reasons, however, to suspect that the CLN2 gene product could have a lysosomal function. First, LINCL, like other forms of NCL, is characterized by an accumulation of autofluorescent lysosome-like storage bodies in the neurons and other cells of patients. Second, a number of other related neurological disorders are caused by lysosomal deficiencies, e.g. PPT in INCL, neuraminidase in sialidosis and &bgr;-hexosaminidase A in Tay-Sachs disease. Third, continuous infusion of leupeptin and other lysosomal protease inhibitors into the brains of young rats induces a massive accumulation of ceroid-lipofuscin in neurons that resembles NCL (6,7).
Thus, there is a need in the art to identify and characterize the CLN2 gene and its gene product (CLN2).
There is a further need to develop diagnostic and therapeutic applications, based on CLN2, for prenatal testing and treatment of LINCL.
The present invention addresses these and similar needs in the art.
The citation of any reference herein should not be construed as an admission that such reference is available as prior art to the invention.
SUMMARY OF THE INVENTION
Classical late infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease whose defective gene (CLN2) has remained elusive. The molecular basis for LINCL has been determined here using an approach that should be applicable to other lysosomal storage diseases. Using the mannose 6-phosphate carbohydrate modification of newly synthesized lysosomal enzymes as an affinity marker, a single lysosomal enzyme was identified which is absent in LINCL. This protein was purified, cloned and sequenced. Sequence comparisons and activity measurements suggest that the CLN2 protein is a novel pepstatin-insensitive lysosomal peptidase. In patients, a number of mutations in the gene encoding this protein were found, confirming it as CLN2.
A biochemical approach, which relies upon the fact that newly synthesized soluble lysosomal enzymes contain a modified carbohydrate, mannose 6-phosphate (Man 6-P), was used to identify a protein that is deficient in LINCL. Man 6-P functions as a targeting signal in vivo as it is recognized by Man 6-P receptors (MPRs) which direct the intracellular vesicular targeting of newly synthesized lysosomal enzymes from the Golgi to a prelysosomal compartment (8). Purified cation-independent MPR can be used as an affinity reagent for the detection of immobilized Man 6-P glycoproteins in a Western blot-style assay or can be coupled as a affinity chromatography reagent for the purification of Man 6-P glycoproteins (9,10,11). Thus, a prefered embodiment of the invention includes purification of lysosomal proteins by affinity chromatography using immobilized MPR, followed by peptide sequence analysis, and then use of this sequence information to design nucleic acid probes that can be used for isolation, identification, and characterization of lysomal protein genes.
CLN2 has been identified and the translation product of this gene is a novel protease, which when absent or defective results in LINCL. Identification of CLN2 will not only aid in the prevention of LINCL through genetic counseling but will also provide strategies and test systems for therapeutic intervention. In addition, further characterization of this previously unknown lysosomal enzyme may provide useful insights into other more common human neurodegenerative disorders. Furthermore, the utility of a general approach for determining the molecular bases for lysosomal disorders of unknown etiology has been demonstrated (22).
The present invention is broadly directed to an isolated and characterized LINCL-associated gene (CLN2) and gene product (CLN2). CLN2 is a pepstatin-insensitive carboxyl protease. In a specific embodiment, CLN2 has an amino acid sequence as depicted in
FIG. 3
(SEQ ID NO:3). In another specific embodiment, CLN2 has a nucleotide sequence as depicted in
FIG. 3
(SEQ ID NO:1).
CLN2 is expressed in healthy individuals. However, LINCL patients have either no CLN2 or express a defective (mutant) CLN2. Thus, the present invention advantageously provides a materials capable of ameliorating LINCL by delivering wild-type CLN2 to LINCL patients either through gene therapy or a administration of a pharmaceutical preparation of CLN2 or a CLN2 analog.
The present invention further relates to a chimeric protein comprising the protein or fragment thereof. In specific embodiments, infra, such a chimeric protein consists of maltose binding protein or poly-histidine with CLN2. However, the invention specifically contemplates chimeric proteins comprising a targeting moiety, preferably an intracellular targeting moiety, with CLN2.
Naturally, in addition to the isolated protein and fragments thereof, the invention provides a purified nucleic acid encoding a CLN2 protease, or a fragment thereof having at least 15 nucleotides. In a specific embodiment, the nucleic acid encodes CLN2 having an amino acid sequence as depicted in
FIG. 3
(SEQ ID NO:3). In a more specific embodiment, the nucleic acid has a nucleotide sequence as depicted in
FIG. 3
(SEQ ID NO:1). The invention further provides 5′ and 3′ non-coding sequences, as depicted in FIG.
3
and SEQ ID NO:1. The invention still further provides an alternatively spliced product (still coding for the same full-length CLN2 protease), as depicted in FIG.
3
and SEQ ID NO:2.
In a specific embodiment, the purified nucleic acid is DNA. The DNA may be provided in a recombinant DNA vector. Preferably, the DNA vector is an expression vector, wherein the DNA encoding the CLN2 is operatively associated with an expression control sequence, whereby transformation of a host cell with the expression vector provides for expression of CLN2, or a fragment thereof as set forth above. Thus, the in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human lysosomal protein and methods of its use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human lysosomal protein and methods of its use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human lysosomal protein and methods of its use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3159605

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.