Methods and system for characterizing the response of...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S338000

Reexamination Certificate

active

06671623

ABSTRACT:

1. BACKGROUND OF THE INVENTION
1.1 Field of the Invention
This invention relates generally to a method and system for characterizing subsurface electromagnetic (EM) measurements to determine wellbore and formation properties and, more particularly, to a technique for obtaining the caliper of a wellbore and the electric and geometric properties of the surrounding rock formations from subsurface EM measurements. The invention has general application in the well logging art, but is particularly useful in measuring-while-drilling.
1.2 Description of Related Art
In order to improve oil and gas drilling operations, it is necessary to gather as much information as possible on the properties of the subsurface earth formation where deposits are believed to exist. Such properties include the resistivity of the earth formations traversed by the well borehole, in addition to data on the properties and configuration of the borehole itself.
The collection of downhole information, also referred to as logging, is realized in different ways. A well tool, comprising transmitting and sensing devices for measuring various properties, can be lowered into the borehole on the end of a cable, or wireline. With this type of wireline logging, borehole and formation parameters are measured as a function of depth, i.e., while the tool is being pulled uphole. An alternative to wireline logging techniques is the collection of data on downhole conditions during the drilling process. By collecting and processing such information during the drilling process, the driller can modify or correct key steps of the operation to optimize performance. While-drilling measurements are also less affected by significant hole washout and invasion, which typically occur at the wireline stage.
Schemes for collecting data of downhole conditions and movement of the drilling assembly during the drilling operation are known as measurement-while-drilling (MWD) techniques. Similar techniques focusing more on measurement of formation parameters than on movement of the drilling assembly are know as logging-while-drilling (LWD). However, the terms MWD and LWD are often used interchangeably, and the use of either term herein should be understood to include both the collection of formation and borehole information, as well as data on movement of the drilling assembly.
The processes often employed to measure the subsurface characteristics are subject to significant errors unless information on the borehole size, the borehole configuration, and the electric and geometric properties of the invaded zone are also taken into account. During the drilling process, mud filtrate penetrates into the virgin formation, creating an invaded zone. Knowledge of the borehole diameter, also known as the caliper, is essential to correct measurements that are sensitive to standoff. Monitoring the hole size can also be critical for the successful drilling and completion of a well when hole stability is of concern.
There is a lack of a reliable fullbore caliper measurement while drilling. Wireline caliper measurements may not be an option when critical decisions need to be made while drilling. Furthermore, hole conditions will likely have changed by the time a wireline caliper is run. In highly deviated and horizontal wells, both standoff (distance between the tool and borehole wall) and invasion are azimuthally varying. Interpreting measurement logs that are sensitive to standoff may require the knowledge of standoff at different directions. Thus, a fullbore caliper is extremely useful for interpreting azimuthal measurements.
U.S. Pat. No. 4,407,157 describes a technique for measuring a borehole caliper by incorporating a mechanical apparatus with extending contact arms that are forced against the sidewall of the borehole. Such mechanical apparatus have practical limitations and are limited in the range of diameter measurement they provide. Due to the unsuitability of mechanical calipers to drilling operations, indirect techniques of determining borehole calipers have been proposed.
Conventional caliper measurement techniques include acoustic transducers that transmit ultrasonic signals to the borehole wall. U.S. Pat. No. 5,469,736 describes an apparatus for measuring the caliper of a borehole by transmitting ultrasonic signals during a drilling operation. U.S. Pat. No. 5,397,893 describes a method for analyzing formation data from a MWD tool incorporating an acoustic caliper. U.S. Pat. No. 5,886,303 describes a logging tool including an acoustic transmitter for obtaining the borehole caliper while drilling. However, the techniques proposed with acoustic calipers entail measurements employing standoff and travel time calculations, resulting in data of limited accuracy. Sound wave reflections in soft formations may also be too weak to be accurately detected, leading to loss of signals.
U.S. Pat. No. 4,791,797 proposes another technique for measuring a borehole caliper while drilling. The '797 patent describes a process whereby two tools having different sensitivities are used to take downhole measurements. The obtained measurements are then combined in an iterative process to determine the borehole readings. In addition to requiring combined multiple computations and iterations, the techniques proposed by the '797 patent also require independent lithology identification.
Downhole measurements are also affected by mud filtrate invasion that changes the properties of the rock near the wellbore. The traditional approach in invasion analysis, based on plotted curves known as “tornado charts,” requires the input data to be corrected for the effects of the borehole on the measurements. This is typically done, most of the time unjustified, assuming the hole size to be the same as the bit size of the drilling tool, since the actual hole size is rarely measured while drilling. Moreover, with more than three subsurface measurements, reading from the tornado charts produces results that depend on which three resistivities are taken as inputs.
The wealth of information provided by conventional multisensor and LWD tools makes these tools ideal for accurate borehole and formation definition through inversion to improve oil, gas, and water exploration. Inversion algorithms typically implement a forward modeling capability that can predict the well tool response for a given formation. See Lin, Y. et al.,
Inversion of induction logging data using the least square technique
, SPWLA Twenty-Fifth Annual Logging Symposium, 1984; Mezzaesta, A. et al.,
Integrated
2-D
interpretation of resistivity logging measurement by inversion methods
, SPWLA Thirty-Sixth Annual Logging Symposium, 1995. However, accurate characterization of the tool response usually requires sophisticated and computer intensive numerical forward modeling codes to solve the fundamental equations governing the electromagnetic energy distribution of the measurements. The speed of current two-dimensional (2D) inversion programs is a major limitation preventing their universal application.
On the other hand, a physical concept that describes laterolog-type well tool responses to invasion has been used for many years. This is the pseudo-geometrical factor J, which is defined by the relation
R
a
=J R
xo
+(1
−J
)
R
t
,  (1)
where R
a
is the apparent formation resistivity of the measurement, R
xo
is the invaded zone resistivity, and R
t
is the actual resistivity of the virgin formation.
The pseudo-geometrical factor J is simply interpreted as the percentage of the measured signal coming from the invaded zone in the absence of a borehole. Obviously, J should depend on the invasion diameter D
i
. Another deficiency of the pseudo-geometrical factor is that it not only depends on the invasion diameter but also on the contrast between R
t
and R
xo
. This limits its utility for practical calculations since one has to tabulate all the values of J under different contrast and for different invasion diameters.
It is desirable to have a simplified method and system for characterizing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and system for characterizing the response of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and system for characterizing the response of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and system for characterizing the response of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3156048

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.