High speed vitreous cutting system

Surgery – Instruments – Cutting – puncturing or piercing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06575990

ABSTRACT:

FIELD OF INVENTION
The present invention relates to devices for performing micro-surgical procedures in the posterior portion of the eye. More particularly, the present invention relates to a high-speed pneumatically driven vitreous cutter.
BACKGROUND OF THE INVENTION
The instrument most commonly used, and generally preferred, for vitreous surgery is a pneumatically-operated axial guillotine cutter. A typical pneumatically-operated guillotine cutter has a handpiece that includes a needle with a cutting/aspiration port located near the needle's distal end. The handpiece receives pneumatic power from a vitreoretinal surgical system (or console). Often, the system also provides aspiration and illumination functions.
Although numerous improvements have been made over the years, the fundamental aspects of vitreous cutters are known and taught by O'Malley and Heintz in U.S. Pat. Nos. 3,815,604 and 3,884,238, respectively. In its modern form, the axial guillotine cutter is relatively small, lightweight, durable, cheap, and exhibits excellent cutting characteristics.
One negative aspect of guillotine cutters, whether pneumatically or electrically operated, axial or rotary, is that the flow through the cutting port is discontinuous, being interrupted when the cutting blade passes across the port. In vitreous surgery, this can often be observed as “vitreous bounce,” as the vitreous is alternately pulled into the port and released. This, in turn, can make removal of vitreous close to the retina hazardous, as the retina may become detached or may be inadvertently drawn into the cutting port.
Sussman and Zaleski, for example, provide one solution to this problem in U.S. Pat. No. 5,284,472. An alternative solution, however, is to increase the cutting rate. It is observed in clinical practice that the vitreous bounce is reduced to a negligible level when the cutting rate is high, generally in the range of 1200 to 1500 cuts per minute (cpm) or more. In U.S. Pat. No. 5,176,628, for example, Charles et al. state that increased cutting rate (up to 1200 cpm) is a desirable cutter characteristic.
Various improvements have gradually raised the maximum cutting rate of pneumatic axial guillotine cutters from 420 cpm in the 1970s to 600 cpm in 1982 and to 800 cpm in 1992. In contrast, high-speed cutting has been available from the very earliest electrically-operated guillotine cutters. Peyman and Dodich claim operation of an electric cutter at 3000 cpm in U.S. Pat. No. 3,776,238.
The principal reason for the slow progress with pneumatically-operated cutters is the physics of moving gas through a long interconnecting tube to drive the surgical handpiece. In order to preserve sterility in the vicinity of the patient and surgeon, the console containing the driver mechanism (which supplies the pneumatic energy to drive the cutter) is located at a considerable distance from the patient. The surgical handpiece is typically connected to the console through 72″ to 84″ of tubing. The rate at which the pneumatic pressure at the handpiece end of the tubing can change is limited by the physics of compressible-gas flow. In particular, the flow velocity through the tube cannot exceed the speed of sound.
Eight hundred cpm is not the ultimate speed limit for pneumatic axial guillotine cutters. A speed of 1500 cpm has been successfully demonstrated in a cutter positioned at the end of 84″ of tubing. To achieve this performance, however, requires coordinated improvements in both the surgical handpiece and the pneumatic driver mechanism in order to overcome the physical limitations of the intervening tubing.
While a high cutting rate is desirable for removing vitreous close to the retina, a high cutting rate is not desirable for removing material at other locations in the eye. The rate of removal of vitreous is significantly greater at a cut rate of 500 to 600 cpm than it is at a cut rate of 1500 cpm. This is because the vitreous is removed in “nibbles” at 1500 cpm and in “bites” at 600 cpm. Thus, when vitreous bounce is not a concern, such as when removing material at the center of the eye, it is desirable to remove vitreous at a lower cut rate.
Despite the known benefits of having an adjustable-speed, pneumatic cutter that is also capable of operating at high speeds, few if any cutters exist that offer such functionality. Since high-speed choices are limited, some surgeons have resorted to using modern electrically driven probes even though they are expensive, heavy, and have a tendency to vibrate excessively.
SUMMARY OF THE INVENTION
Accordingly, there is a need for a vitreous cutter that can provide a high cutting rate, but retain as much as possible the advantages of the present pneumatically-operated vitreous cutters in terms of size, shape, weight, vibration, torque, low or minimal heat generation, and low cost.
In general terms, the invention provides a system having a pneumatically-operated axial guillotine cutter and a pneumatic driver mechanism that is capable of high-speed operation (at least 1200 cpm) with 84″ of intervening tubing. The pneumatic driver module or subsystem of the invention is suitable for incorporation into a vitreoretinal surgical system so as to provide a high-speed cutting function when used with an appropriate surgical handpiece. The invention also provides a pneumatic driver module suitable for attachment to an existing vitreoretinal surgical system so as to provide a high-speed cutting function when used with an appropriate surgical handpiece. The invention also provides a pneumatic driver module with a human interface for conveniently selecting one of two operating modes: a lower cutting rate for rapid removal of vitreous in the center part of the eye (a “cut” mode), and a higher cutting rate for more controlled removal of vitreous near the retina (a “shave” mode).
As noted, one embodiment of the invention is a subsystem or module to be incorporated into a surgical system. A very desirable alternative embodiment, however, is a free-standing module that could be purchased and attached to an existing vitreoretinal surgical system so as to upgrade the cutting rate without the necessity of replacing the entire surgical system in order to obtain this feature.
The present invention includes a system with a high-speed pneumatically-driven vitreous cutter, capable of operating at a cutting rate above 800 cpm, the maximum currently achievable with standard probes. In at least one embodiment, the cutter can operate at even higher speeds (above 1000 cpm), so that it can shave tissue. Because it has such capabilities, the cutter is referred to as a “cut and shave” or “C & S” probe. In addition to high-speed functionality, the cutter or C & S probe can also be operated at peak pressure as low as thirteen (13) pounds per square inch (psi), an efficiency not previously achieved. Prior systems operated at pressures of about 20 to 30 psi.
The system includes a driver or actuator that powers the cutter. The actuator provides pressure pulses that can drive the cutter at cutting rates above 800 cuts per minute. The actuator is capable of supplying the appropriate pulses through an actuation or connection tubing of about 72″ to about 84″ in length. The actuator produces pulse trains at a frequency selectable by the user.
The invention may be implemented in one of two general forms. In the first form, the invention is implemented as a stand-alone or individual unit separates from a vitrectomy machine, phaco emulsification machine, or combined vitrectomy/phaco emulsification machine (generally referred to as a “surgical machine”). The inventors have developed at least two actuators that can take this form.
The first stand-alone actuator is designed to be attached to a surgical machine, such as a machine designed to operate a known 30 psi probe at a cut rate (frequency) of at least 600 cpm. The actuator of the present invention develops the pneumatic energy needed to operate a cutter at high speed by capturing the pneumatic output of the surgical machine. A wav

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High speed vitreous cutting system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High speed vitreous cutting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High speed vitreous cutting system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3155986

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.