Sulphonated polyesters as finishing agents in detergent,...

Compositions – Durable finishes for textile materials – or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S295000, C528S302000, C528S308000, C528S308600, C528S361000, C252S008620, C252S008830, C510S299000, C510S400000

Reexamination Certificate

active

06579466

ABSTRACT:

The present invention relates to new water-dispersible or water-soluble sulphonated polyesters, to a process for their preparation and to their use as antisoiling and/or antiredeposition agent and optionally detergent in detergent compositions, in rinsing, softening or antisoiling (“finishing”) treatment compositions, for washing with or without pretreatment, rinsing, softening or the antisoiling treatment of textiles, especially those polyester-based.
According to the invention these are water-dispersible or water-soluble sulphonated polyesters characterized in that they are capable of being obtained by esterification and/or transesterification and polycondensation of a monomer composition based:
on an unsulphonated diacidic monomer (A) consisting of at least one dicarboxylic acid or anhydride chosen from terephthalic, isophthalic and 2,6-naphthaleiedicarboxylic acids or anhydrides or their diesters, in a quantity corresponding to a molar ratio (A)/(A)+(SA) of the order of 9S/100 to 60/100, preferably of the order of 93/100 to 65/100
on a sulphonated diacidic monomer (SA) consisting of at least one sulphonated aromatic or sulphonated aliphatic dicarboxylic acid or anhydride, or their diesters, in a quantity corresponding to a molar ratio (SA)/(A)+(SA) of the order of 5/100 to 40/100, preferably of the order of 7/100 to 35/100, it being possible for up to 50 mol %, preferably up to 30 mol %, of the quantity of usulphonated diacidic monomer (A) and/or of sulphonated diacidic monomer (SA) to be replaced with a hydroxylated diacidic monomer (HA) consisting of at least one hydroxylated aromatic or aliphatic dicarboxylic acid or anhydride or a diester of the 8aid hydroxylated aromatic or aliphatic dicarboxylic acid
and on a polyol monomer (P) consisting of at least one polyol chosen from ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerol, 1,2,4-butanetriol and 1,2,3-butanetriol, in a quantity corresponding to a ratio of number of OH functional groups of the polyol monomer (P)
umber of COOS functional groups or functional group equivalents of the diacidic monomer (A)+(SA)+(HA) of the order of 1.05 to 4, preferably of the order of 1.1 to 3.5 and very particularly of the order of 1.8 to 3
in that the sulphonated diacidic monomer (SA) consists of at least one sulphonated aromatic dicarboxylic acid or anhydride or of a mixture of sulphonated aromatic acids or anhydrides and of sulphonated aliphatic acids or anhydrides or their diester when the polyol monomer (P) does not contain any polyol other than a glycol or when the hydroxylated diacidic monomer (HA) is absent and in that the said sulphonated polyesters exhibit
a number molecular mass lower than 20 000,
a sulphur weight content of the order of 0.5 to 10%, preferably of the order of 1.2 to 8%
and a hydroxyl functional group content, expressed as OH equivalent/kg of polymer, higher than 0.2.
The hydroxyl functional group contents are estimated by proton NMR; the measurement is carried out in dimethyl sulphoxide.
The number molecular manses are measured by gel permeation chromatography in dimethylacetamide containing 10
2
N of LiBr, at 25° C. The results are expressed as polystyrene equivalents.
The elementary unit considered in the definition of the mole of monomer (A), (SA) or (HA) is the COOE functional group in the case of the diacids or the COOH functional group equivalent in the case of the anhydrides or of the diesters.
The unsulphonated diacidic monomer (A) preferably consists of 50 to 100 mol %, very particularly of 70 to 90 mol %, of terephthalic acid or anhydride or of one of its lower (methyl, ethyl, propyl, isopropyl, butyl) diesters and of 0 to 50 mol %, very particularly from 10 to 30 mol %, of isophthalic acid or anhydride and/or of 2,6-naphthalenedicarboxylic acid or anhydride or of one of their lower (methyl, ethyl, propyl, isopropyl, butyl) diesters; the preferred diesters are methyl diesters.
In the unsulphonated diacidic monomer (A) there may additionally be present minor quantities of aromatic diacids other than those mentioned above, such as ortho-phthalic acid, anthracene, 1,8-naphthalene, 1,4-naphthalene and biphenyl dicarboxylic acids or aliphatic diacids such as adipic, glutaric, succinic, triaethyladipic, pimelic, azelaic, sebacic, sueric, itaconic and maleic acids, etc. in the form of acid, anhydride or lower (methyl, ethyl, propyl, isopropyl, butyl) diesters.
The sulphonated diacidic monomer (SA) has at least one sulphonic acid group, preferably in the form of an alkali metal (preferably sodium) sulphonate, and two acidic functional groups or acidic functional group equivalents (that is to nay an anhydride functional group or two ester functional groups) attached to one or a number of aromatic rings, when aromatic dicarboxylic acids or anhydrides or their diesters are involved, or to the aliphatic chain when aliphatic dicarboxylic acids or anhydrides or their diesters are involved.
Among the sulphonated diacidic monomers (SA), there may be mentioned aromatic sulphonated dicarboxylic acids or anhydrides such as sulphoisophthalic, sulphoterephthalic, sulpho-ortho-phthalic acids or anhydrides, 4-sulpho-2,7-naphthalenedicarboxylic acids or anhydrides, sulpho-4,4′-bis(hydroxycarbonyl)diphenyl sulphones, sulphodiphenyldicarboxylic acids or anhydrides, sulpho-4,4′-bis(hydroxycarbonyl)diphenylmethanes, sulpho-5-phenoxyisophthalic acids or anhydrides or their lower (methyl, ethyl, propyl, isopropyl, butyl) diesters and sulphonated aliphatic sulphonated dicarboxylic acids or anhydrides such an sulphosuccinic acids or anhydrides or their lower (methyl, ethyl, propyl, isopropyl, butyl) diester. The preferred sulphonated diacidic monomers (SA) are sulphoisophthalic and sulphosuccinic acids or anhydrides.and their methyl diesters and very particularly dimethyl 5-sodiooxysulphonylisophthalate.
The hydroxylated diacidic monomer (HA) has at least one hydroxyl group attached to one or a number of aromatic rings when it is an aromatic monomer or to the aliphatic chain when it is an aliphatic monomer.
Among the hydroxylated diacidic monomers (HA) there may be mentioned 5-hydroxyisophthalic, 4-hydroxyisophthalic, 4-hydroxyphthalic, 2-hydroxymethylsuccinic, hydroxymetbylglutaric and hydroxyglutaric acids or anhydrides etc., or their lower (methyl, ethyl, propyl, isopropyl, butyl) diesters.
The polyol monomer (P) preferably used is monoethylene glycol and/or glycerol.
The said water-soluble and/or water-dispersible sulphonated polyesters can be obtained by the usual esterification and/or transesterification and polycondeneation processes, for example by an esterification and/or transesterification reaction, in the presence of a catalyst of esterification/transesterification of the polyol monomer (P) with the various diacidic monomers, each diacid being in the acid or anhydride form or in the form of one of its diesters, and polycondensation of the polyol eaters at reduced pressure in the presence of a polycondensation catalyst.
According to a preferred method of preparation the said water-soluble and/or water-dispersible sulphonated polyesters are obtained by carrying out the following successive stages:
a stage of transesterification (interchange) between, an the one hand, the sulphonated diacidic monomer (SA) in diester form and from 50 to 100 mol %, very particularly from 30 to 90 mol %, of the total quantity of the unsulphonated diacidic monomer (A), in diester form, and, on the other hand, a quantity of polyol monomer (P) corresponding to a ratio of number of OH functional groups, of the polyol monomer (P)
umber of COOK functional group equivalents of the said monomers (A) and (SA) in the form of diesters of the order of 1.05 to 4, preferably of the order of 1.1 to 3.5 and very particularly of the order of 1.8 to 3.0
an optional stage of esterification between the possible remaining quantity of the unsulphonated diacidic monomer (A), in diacid or anhydride form, and a quantity of polyol monomer (P) corresponding to a ratio of number of 09 functional groups

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sulphonated polyesters as finishing agents in detergent,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sulphonated polyesters as finishing agents in detergent,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sulphonated polyesters as finishing agents in detergent,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3152584

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.