Performance customization system and process for optimizing...

Pulse or digital communications – Transceivers – Modems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S225000, C375S227000

Reexamination Certificate

active

06647058

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of digital subscriber lines (DSLs), and more particularly, to a performance customization system and method for optimizing DSL performance as measured by such factors as throughput, power consumption, and loop length.
With the explosion in the growth of Internet usage among both businesses and households, telephone companies have been pressured to provide affordable, high bandwidth access that will support high-speed multimedia services, such as video on demand, high speed Internet access, and video conferencing. To meet this demand, telephone companies are increasingly turning to DSL technology. DSL, while having several different embodiments, can provide throughput rates over 400 times faster than that available through traditional 14.4 kbps modems. For example, the following manifestations of DSL technology are either available today or are currently being tested on a trial basis: Asymmetric Digital Subscriber Line (ADSL), which has a throughput of 32 kbps to 8.192 Mbps downstream to the customer and 32 kbps to 1.088 Mbps upstream to the network; Rate Adaptive Asymmetric Digital Subscriber Line (RADSL), which is a rate adaptive variation of ADSL; High-bit-rate Digital Subscriber Line (HDSL), which offers full duplex throughput at T1 (1.544 Mbps) or E1 (2.048 Mbps) data rates; Symmetric Digital Subscriber Line (SDSL), which provides bi-directional throughput at data rates ranging from 160 Kbps-2.084 Mbps; and Very high-bit-rate Digital Subscriber Line (VDSL), which provides high data rates for customers close to the central office (e.g., 51 Mbps for subscribers within 1000 feet). But most importantly, xDSL offers these high data rates over a standard copper telephone line. Thus, with such a large, embedded copper network already in place, network operators view xDSL technology as a means for extending the life of their investment in copper by many years.
Inasmuch as xDSL is deployed over the copper network, it is susceptible to the same unwanted noise signals that plague traditional copper based communication systems. Noise can be generated by components both internal to the communication system, such as resistors and solid state devices, and sources external to the communication system, such as atmospheric noise, high-voltage power lines and electric motors.
It is well known from information theory that the capacity of a channel (i.e., maximum data rate) is directly related to the logarithm of the ratio of the signal power to the noise power on the channel. Therefore, to support the high data rates associated with xDSL, it would seem desirable to boost transmission power levels to boost the signal to noise ratio. As discussed in the foregoing, however, most xDSL systems operate across a broad range of data rates. Thus, if the transmission power level is statically set to support the highest rate possible, this will result in a waste of power for data sessions running at lower throughputs. Moreover, high transmission power levels unfortunately contribute to a phenomenon known as crosstalk, which is perhaps the most common and troubling source of noise in a network.
Crosstalk is defined as the cross coupling of electromagnetic energy between adjacent copper loops in the same cable bundle or binder. Crosstalk can be categorized in one of two forms: Near end crosstalk, commonly referred to as NEXT, is the most significant because the high energy signal from an adjacent system can induce relatively significant crosstalk into the primary signal. The other form is far end crosstalk or FEXT. FEXT is typically less of an issue because the far end interfering signal is attenuated as it traverses the loop. Crosstalk is a dominant factor in the performance of many systems. As a result, xDSL system performance is often stated relative to “in the presence of other systems” that may introduce crosstalk. Therefore, in central office (CO) environments where many xDSL loops or other circuits are bundled together in the same cable binder, it is often desirable to minimize transmit power levels to the lowest levels possible that will still support the desired data rates to reduce the effects of crosstalk between the loops.
Alternatively, where maximum throughput is sought, it becomes desirable to maintain the transmit power level of a given xDSL communication session thereby allowing the data rate to be maximized within the limitations imposed by the noise characteristics of the channel. Optimization of xDSL performance in a central office environment would typically require a combination of both power reduction on some channels and increased throughput or data rates on other channels.
In addition to crosstalk, there may be other reasons to adapt power levels. One of these is to reduce unwanted noise created by the system itself. Certain impairments on the copper loop, such as bridged taps (an unterminated parallel length of wire) may create reflections and distortion energy that can reduce the overall performance of the system. Reducing the power in a frequency band that creates distortion energy or increasing the power in a band that does not create distortion energy can improve the performance of the overall system.
In view of the foregoing discussion, what is sought is an xDSL system and process that dynamically adjust the transmit power levels, data rates, and other defined performance parameters of one or more specific communication sessions to customize overall system performance.
SUMMARY OF THE INVENTION
Certain advantages and novel features of the invention will be set forth in the description that follows and will become apparent to those skilled in the art upon examination of the following or may be learned with the practice of the invention.
The present invention is generally directed to a performance customization system and process for optimizing xDSL performance. Broadly stated, an improved receiving modem according to the present invention includes negotiating means that the receiving modem uses to negotiate with a transmitting modem to select a particular xDSL performance parameter to be optimized. In addition, the receiving modem includes means that are used to calculate the signal to noise ratio on the xDSL. Finally, the receiving modem includes means capable of requesting an adjustment in the selected performance parameter.
According to another aspect of the invention, an improved transmitting modem is disclosed that includes negotiating means used to negotiate with a receiving modem to select an xDSL performance parameter to be optimized. The transmitting modem further includes means responsive to performance parameter adjustment requests that are sent from a receiving modem. Further means are included in the transmitting modem for making the requested adjustment to the xDSL performance parameter.
The invention can also be viewed as providing a method for customizing the performance characteristics of an xDSL receiving modem. In this regard, the method can be broadly summarized by the following steps: The receiving modem negotiates with a transmitting modem to select an xDSL performance parameter for optimization. A signal to noise ratio is calculated and, based on this result, an adjustment request is made for the selected xDSL performance parameter.
Similarly, the invention provides a method for customizing the performance characteristics of an xDSL transmitting modem. The method can be broadly summarized as follows: The transmitting modem negotiates with a receiving modem to select an xDSL performance parameter for optimization. An adjustment request for the selected xDSL performance parameter is received and, based on this request, the performance parameter is adjusted.
According to a preferred embodiment of the invention, the modems will choose either the data rate or the transmission power level as the performance parameter for adjustment. The non-selected performance parameter is assigned a fixed value while the selected performance parameter will undergo adjustment until the system op

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Performance customization system and process for optimizing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Performance customization system and process for optimizing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Performance customization system and process for optimizing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3151607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.