Optical communication system

Optical: systems and elements – Deflection using a moving element – Using a periodically moving element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S199200, C359S199200, C359S199200, C359S199200, C359S199200

Reexamination Certificate

active

06580530

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an optical communication system comprising a transmission switching system.
More particularly, the present invention relates to a system and a method of transmission switching for an optical communication system comprising at least a first primary guided optical path for the transmission of at least one optical signal and at least a first secondary guided optical path to which the transmission of the optical signal can be switched in case of degradation of the transmission in the first primary guided optical path.
DISCUSSION OF THE BACKGROUND
In the operation of optical communication systems there is a widely felt need to minimize the problems which arise when there is a deterioration of transmission due, for example, to a fault of a device in a guided optical path (e.g. an optical amplifier) and/or of a device in a terminal station (e.g. a transmitter or receiver) and/or to the breaking of an optical cable.
Among the operating systems for optical communication systems, there are known remote monitoring systems for detecting and locating the presence of a fault in the system.
EP 0 408 905 describes an optical fibre telecommunications line comprising active optical fibre amplifiers. Each active optical fibre present in the amplifiers is connected to two laser sources of optical pumping radiation. The first of these two laser sources of optical pumping radiation is put into operation and the second is kept in reserve so that it can be put into operation when the first becomes faulty. The two sources of optical pumping radiation are also connected to a microprocessor circuit capable of commanding them to send alarm signals on the state of the amplifier to the terminal stations of the line and to receive from these stations control signals for switching operation between the two sources of optical pumping radiation.
U.S. Pat. No. 5,475,385 describes a telemetry system for locating a fault in an optical transmission system including optical fibre amplifiers. Each amplifier has a corresponding source of pumping radiation comprising a loop system, for automatic gain control, around the fibre of the optical amplifier. The spontaneous emission of each amplifier is detected and used to control the corresponding source of pumping radiation and to maintain the output of the amplifier at a predetermined level. The transmitter of the system injects a monitoring tone whose presence or absence is detected by each amplifier. If there is a fault in the transmission line, the down-line amplifiers, not receiving the said monitoring tone, inject a corresponding alarm tone. In reception, suitable devices detect the presence or absence of the monitoring tone and, in its absence, count the number of alarm tones, if they are present, thus determining the position of the fault. The absence of the monitoring tone and of the alarm tones indicates that the fault has occurred between the last amplifier and the receiving station.
U.S. Pat. No. 5,483,233 also describes a telemetry system for locating a fault in an optical transmission system including optical fibre amplifiers. Each amplifier comprises an active optical fibre with a loop system for automatic gain control (AGC) around it. In the AGC the spontaneous emission from the amplifier fibre is detected and used to control the source of pumping radiation in such a way as to maintain the output of the amplifier at a predetermined level. A monitoring tone is injected by the transmission unit of the system. Each amplifier detects the presence of the monitoring tone or of an alarm tone originating from the preceding amplifier. If one of the tones is detected, the signal is amplified and transmitted to the next amplifier. If no tone is detected, an alarm tone corresponding to the amplifier tone is injected into the corresponding pumping source. At the receiving unit of the system, the presence or absence of the monitoring tone, and in its absence the presence or absence of an alarm tone, is detected. The position of a fault in the system is determined from this information.
EP 0506163 describes an optical fibre telecommunications line, comprising two terminal stations, each having a transmitter of optical signals and a receiver connected operationally by an automatic protective device capable of switching off the transmitter in the absence of a received optical signal, and corresponding optical fibre lines connecting the transmitter of one station to the receiver of the other station and including at least one optical amplifier. At least one of the optical amplifiers has a protective device comprising means of detecting the presence of an optical signal at the output of the amplifier. The interruption of light emission in the down-line direction causes the interruption of emission in the whole line by the intervention of the automatic protective device of the terminal stations.
EP 0507367 describes an optical fibre telecommunications system comprising at least one amplifier with an active fibre having a fluorescent element and a laser pump for supplying light energy to the active fibre. Detection means for detecting the presence of light energy are connected to the input of the active fibre. In the absence of light energy at the input of the active fibre, control means are put into operation by the said detecting means to interrupt the pump source in order to interrupt substantially any emission of light energy from the optical amplifier.
In addition to remote monitoring systems for detecting and locating the presence of a fault in the system, there are known remote operating systems for switching, in case of a fault, the transmission of an optical signal, at a predetermined frequency, from a first guided optical path to a second guided optical path.
U.S. Pat. No. 5,091,796 describes a communication system comprising a plurality of stations, a first active line (guided optical path) which connects adjacent stations of a plurality of stations, a second active line which by-passes predetermined stations without “dropping” into them, and a third line for protection, in common between the first active line and the second active line. A monitoring signal travels continuously along the protection line. Each station includes an internal circuit for receiving an input transmission signal from the first active line and for sending an output transmission signal along this line. Each station also includes a switching section for the passage of the protection line without allowing it to drop into each station in normal conditions, and for connecting, in alarm conditions, the protection line to the internal circuit so that the input transmission signal is received by the protection line up-line instead of by the first active line, so that the protection line up-line from the station is used, instead of the first active line in which, for example, a fault has occurred. Additionally, the monitoring signal, which is generated by the output transmission signal, is sent, down-line, through the protection line.
In the said known systems, a degradation of transmission is dealt with at the transmitting and receiving stations and also at intermediate stations or optical amplifiers along a guided optical path. These therefore require a single operating system which is perfectly compatible with the guided optical path and with the transmitting and receiving terminal stations which must, therefore, communicate with each other.
The inventors have perceived that, in practice, the manufacturers of terminal stations are frequently different from the manufacturers of guided optical paths, comprising optical cables and optical amplifiers or intermediate stations. The said conventional systems therefore require, at the time of assembly of an optical communication system, a laborious process of adaptation for making the terminal stations compatible (communicating) with the guided optical path.
The inventors have also perceived that, in the said conventional operating systems, in the case of a multiple-wavelength transmission in a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3147681

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.