Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Silver compound sensitizer containing
Reexamination Certificate
2002-07-02
2003-10-28
Letscher, Geraldine (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Radiation sensitive product
Silver compound sensitizer containing
C430S567000, C430S631000
Reexamination Certificate
active
06638704
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a silver halide emulsion having low fogging and high sensitivity and also relates to a silver halide color photographic light-sensitive material using the emulsion.
BACKGROUND OF THE INVENTION
In recent years, the requirements for silver halide photographic emulsions are becoming severer. To speak more specifically, the emulsion is demanded to have higher sensitivity, improved relationship of the sensitivity/fog ratio and higher image quality. One of the techniques for elevating the sensitivity of a silver halide emulsion and thereby attaining a higher image quality is to use tabular grains. The tabular grain has advantage in that higher sensitivity can be achieved including the improvement in the color sensitization efficiency due to the sensitizing dye, the relationship of the sensitivity/granularity ratio can be improved, the sharpness can be elevated owing to the optical properties peculiar to the tabular grain, and the covering power can be increased.
However, the silver halide tabular grain capable of successfully ensuring higher sensitivity and improved relationship of the sensitivity/granularity ratio suffers from increased fogging. Thus, the problem to be solved is to attain low fogging at the same time.
With respect to the technique for improving the relationship of the sensitivity/granularity ratio of tabular grains, for example, U.S. Pat. Nos. 5,219,720 and 5,334,495 disclose a technique of using tabular grains having a small spacing between twin planes. Even by this technique, however, it has been found to be impossible to satisfy two requirements at the same time that the tabular grain has a high aspect ratio and a small twin plane spacing and that the grain shape/structure (twin plane spacing distribution, tabular grain ratio and equivalent-circle corresponding diameter distribution (i.e., equivalent-circle diameter distribution)) is highly uniform among grains. Thus, the above-described technique is not enough to obtain a silver halide emulsion having both low fogging and high sensitivity.
With respect to the technique for controlling the shape of silver halide grains and thereby forming uniform silver halide grains, for example, U.S. Pat. Nos. 5,580,712 and 5,670,616 disclose a technique of using a biopolymer at the grain formation. However, these patents neither teach nor suggest the technique of the present invention where a dispersion medium having a low viscosity is used at the grain formation, so that the grains formed can have a high aspect ratio and a small twin plane spacing and among the grains, the twin plane spacing distribution, the tabular grain ratio and the equivalent-circle diameter distribution can be uniform.
Conventional gelatin heretofore used in silver halide emulsions is described in detail below. In the process of forming silver halide emulsion grains, gelatin is used in several steps. The function required for the gelatin differs among respective steps and the gelatin is preferably designed in the molecular level to satisfy the use purpose in each step.
During the process of forming silver halide emulsion grains, at least one gelatin is used as a protective colloid of a silver halide grain in the nucleation step and subsequent ripening/growing step. Recently, for preparing a silver halide tabular grain emulsion having a high aspect ratio, a chemically modified gelatin is being aggressively used. JP-B-5-12696 (the term “JP-B” as used herein means an “examined Japanese patent publication”) discloses a technique of using a gelatin of which sulfide group is rendered ineffective by hydrogen peroxide or the like, as the protective colloid and thereby preparing tabular grains having a small thickness. Also, JP-A-8-82883 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”) discloses a technique of making the amino group and the sulfide group ineffective and thereby preparing tabular grains having a small thickness. In addition, JP-A-10-148897 discloses a technique of introducing two or more carboxyl groups at the time of chemically modifying the amino group in gelatin and thereby preparing monodisperse tabular grains having a small thickness. Furthermore, U.S. Pat. No. 5,580,712 and EP-A-926544 disclose a technique for increasing the formation ratio of tabular grains, where gelatin for use as a protective colloid is designed in the molecular level and a gelatin derivative prepared using a technique of chemical synthesis or genetic engineering is used.
However, there is not known a technique such that gelatin for use as a protective colloid is subjected to chemical modification or molecular designing during the grain formation process of a silver halide grain emulsion with the intention of changing the property, thereby optimizing the macroscopically physical properties of the dispersion medium, such as viscosity, and in turn obtaining objective silver halide grains. For example, on taking account of the dependency of the solubility of silver halide on the temperature, it would be easily anticipated that if gelatin incapable of gelling under a lower temperature can be used, the silver halide grains may be more finely formed.
At present, the industrially produced gelatin is generally derived from collagen contained in animal bone or skin. One of the defects of the animal collagen-derived gelatin is the polydisperse molecular weight. This polydisperse molecular weight is apparently disadvantageous for controlling the physical properties of a dispersion medium containing the gelatin. If a gelatin having a monodisperse molecular weight is found, the grain shape may also be rendered monodisperse in the process of forming silver halide grains.
According to the technique of producing a gelatin derivative using a technique of chemical synthesis or genetic engineering described in U.S. Pat. No. 5,580,712 and EP-A-926543, the gelatin derivative theoretically has a monodisperse molecular weight (also experimentally, when the molecular weight distribution is measured using a gel permeation chromatography, the molecular weight is found to be substantially monodisperse). However, this gelatin having a monodisperse molecular weight is not intended to use so as to optimize the physical properties of the dispersion medium used in the production process of a silver halide grain emulsion.
With respect to the technique for forming silver halide fine grains, for example, JP-A-10-43570, JP-A-4-292416, U.S. Pat. No. 5,250,403, JP-W-6-507255 (the term “JP-W” as used herein means an “unexamined published international patent application”), JP-A-4-139440 and JP-A-9-179225 disclose it. These patents also disclose a technique of using silver halide grains in the growth step and thereby forming silver halide tabular grains.
It is known that when silver halide tabular grains are formed by using silver halide fine grains in the growth step, tabular grains having a very small thickness are obtained and the grains are uniform in the halogen composition.
In the case of using silver halide fine grains in the growth step, the fine grains added are dissolved and consumed for the growth of previously existing tabular grains. However, if the fine grain has a large sphere-corresponding diameter (i.e., a large equivalent-sphere diameter), these coarse grains are not dissolved and remain even after the growth step. If the fine grain added has a twin plane, the grain itself grows and turns to a silver halide tabular grain, as a result, the grain size or grain size distribution of finally obtained grains cannot be controlled.
In order not to allow the fine grains to remain, a method where a silver salt aqueous solution and a halide salt aqueous solution each in a low concentration are mixed in an external mixer to form silver halide fine grains and the grains are immediately used in the growth step, may be used. By reducing the concentrations of the solutions added, the grain size of silver halide fine grains can be made small. This method has, however, a problem in the productivity.
In anothe
Kikuchi Makoto
Maruyama Yoichi
Miki Masaaki
Takeda Naohiro
Toda Yuzo
Fuji Photo Film Co. , Ltd.
Letscher Geraldine
Sughrue & Mion, PLLC
LandOfFree
Silver halide photographic emulsion and light-sensitive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Silver halide photographic emulsion and light-sensitive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silver halide photographic emulsion and light-sensitive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3147570