Connector device for garment patch antenna

Electrical connectors – Including or for use with coaxial cable – Adapted to join cable conductors to different type conductors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S718000

Reexamination Certificate

active

06645008

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a connector device for providing electrical connection between electrical conductors of a cable and electrically conductive spaced layers of a component, in particular, but not exclusively, where the component is a patch antenna.
BACKGROUND AND SUMMARY
Traditionally, mobile telecommunications equipment including mobile telephones and radio receivers have been provided with their own antenna to form a self contained functional device. More recently, work in the field of wearable electronics has included attempts to combine and integrate electronic equipment, including telecommunications equipment with items of clothing. Such integration can be beneficial in a number of ways including improved ease of carrying electronic equipment, improved functionality and elimination of duplicated components. An example where the last two benefits are realised would be the automatic routing and switching of audio from audio reproduction equipment and a mobile telephone through the save pair of earphones.
In some instances the ability to distribute and integrate equipment in clothing allows for new types of component to be employed which can result in improved performance. An example new component is an antenna of laminar construction such as the one described in British patent application number 9927842.6 (applicants reference PHB 34417) filed on Nov. 26, 1999 in the name of Koninklijke Philips Electronics N.V. and published as WO-A-01/39326 on May 31, 2001 and entitled ‘Improved Fabric Antenna’. The antenna is primarily intended for use in mobile telecommunications applications and comprises first and second spaced layers of electrically conducting fabric, a layer of electrically insulating fabric between the first and second layers, first connection means by which electrical contact is made between the first and second layers, and second connection means by which the first and second layers are connectable to telecommunications equipment. The arrangement constitutes a so-called ‘planar inverted F antenna (PIFA)’.
The antenna is primarily intended for incorporation into a shoulder portion of a garment in the form of a shoulder pad or into a lapel of a garment, although other locations may be considered. In general it is preferable that fabric is used for construction of the antenna rather than other materials as this offers improved comfort to the wearer through being breathable and in terms of flexibility. The antenna is connectable to telecommunications equipment using a co-axial cable but providing connection between the cable and first and second spaced layers of electrically conducting fabric presents certain problems. Where electrical connection is provided by soldering conductors of the co-axial cable to the electrically conductive fabric the process is time consuming through being labour intensive and the presence of heat means that the soldering process needs to be performed with extreme care in order to avoid heat induced damage to the antenna. This is applicable where the layers of electrically conductive fabric are based on material particularly sensitive to heat, such as nylon. Another problem is that factories and workers in the garment construction industry are generally familiar with garment construction techniques but not processes more commonplace in the electronics industry, in this case the process of soldering. Lack of familiarity and absence of suitably equipped factories has the potential to bring about low output, substantial training costs and high product reject rates. For certain designs of antenna, the precise location chosen to connect the conductors of the co-axial cable to the layers of electrically conductive fabric has a significant influence on the operational characteristics and therefore performance of the antenna so accurate soldering is required for each antenna sample produced. Finally, the resulting connection made between antenna and cable conductor by soldering lacks the required mechanical strength normally required in the field of wearable electronics.
It is therefore an object of the present invention to provide a device for providing electrical connection between electrical conductors of a cable and electrically conductive spaced layers of a component, which device seeks to overcome at least some of the above mentioned problems.
In accordance with the present invention there is provided an electrical connector device for providing electrical connection between electrical conductors of a cable and portions of first and second electrically conductive spaced layers of a patch antenna having a layer of electrically insulating material between the said first and second layers, said connector device comprising:
a main body component having at least two electrically conductive surface regions, each region being in electrical connection with a cable conductor connection means suitable for establishing electrical connection with an electrical conductor of a cable, wherein
said main body component is configured for being interposed at least in part between the first and second electrically conductive spaced layers of a patch antenna with each electrically conductive surface region of the main body component providing electrical coupling with a portion of a said one of the first and second electrically conductive spaced layers.
Such electrical coupling may be provided by establishing physical and electrical contact between electrically conductive surface regions of the main body component and electrically conductive spaced layers of the antenna. However, such electrical coupling may be provided in other ways, for example by capacitive coupling between the electrically conductive surface regions of the main body component and the electrically conductive spaced layers of the antenna. If this is the case there may under certain circumstances an insulator between the electrically conductive surface regions of the main body component and the electrically conductive spaced layers of the antenna.
Preferably, the main body component includes an upper surface and a lower surface each bearing at least one of the two electrically conductive surface regions such that when the main body component is interposed between first and second electrically conductive spaced layers of a patch antenna the electrically conductive surface region of the lower surface is electrically coupled with one of the first and second electrically conductive layers and the electrically conductive surface region of the upper surface is electrically coupled with the other one of the first and second electrically conductive layers. Optionally, one of the upper and lower surface is generally wholly covered by one of the electrically conductive surface regions to form a ground plane and the other one of the upper and lower surface is partially covered by another one of the electrically conductive surface regions arranged in a line to form a microstrip line.
The said main body component may be penetrable by a sewing needle in which case the main body component may be inserted between first and second electrically conductive spaced layers of a patch antenna and held in place by subsequently sewing straight through each of the first layer, body component and second layer to hold the items together by thread. Sewing is one of the most widespread techniques in the garment construction industry so the possibility of attaching the body component to the conductive spaced layers in this way is advantageous.
These and other aspects of the present invention appear in the appended claims which are incorporated herein by reference and to which the reader is now referred.


REFERENCES:
patent: 2881404 (1959-04-01), Kamm
patent: 3474385 (1969-10-01), Cefarelli et al.
patent: 4445742 (1984-05-01), Fullam
patent: 5356298 (1994-10-01), Voss et al.
patent: 5374196 (1994-12-01), Horine
patent: 5416622 (1995-05-01), Engfer
patent: 5810620 (1998-09-01), Kobayashi et al.
patent: 6123550 (2000-09-01), Burkert et al.
patent: 6433743 (2002-08-01), Massey et al.
patent: 2345208

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Connector device for garment patch antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Connector device for garment patch antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector device for garment patch antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3147132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.