Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2000-10-13
2003-08-19
Lee, Rip A. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C524S442000, C524S495000, C524S262000, C524S310000, C524S317000, C524S320000, C524S392000
Reexamination Certificate
active
06608145
ABSTRACT:
FIELD OF THE INVENTION
The invention generally relates to vulcanizable elastomeric compounds containing silica as a reinforcing filler.
BACKGROUND OF THE INVENTION
When producing elastomeric compositions for use in rubber articles, such as tires, power belts, and the like, it is desirable that these elastomeric compositions are easily processable during compounding and have a high molecular weight with a controlled molecular weight distribution, glass transition temperature (T
g
) and vinyl content. It is also desirable that reinforcing fillers, such as silica and/or carbon black, be well dispersed throughout the rubber in order to improve various physical properties, such as the compound Mooney viscosity, modulus, tangent delta (tan &dgr;), and the like. Rubber articles, especially tires, produced from vulcanized elastomers exhibiting these improved properties will have reduced hysteresis, better rolling resistance, snow and ice traction, wet traction, and improved fuel economy for vehicles equipped with such tires.
With the increasing use of silica as a reinforcing filler for rubber, filler dispersion in rubber stocks has become a major concern. Because polar silanol groups on the surface of silica particles tend to self-associate, reagglomeration of silica particles can occur after compounding, leading to poor silica dispersion and a high compound viscosity. The strong silica filler network results in a rigid uncured compound that is difficult to process in extrusion and forming operations. Previous attempts at preparing readily processable, vulcanizable silica-filled rubber stocks containing natural rubber or diene polymer and copolymer elastomers have focused on the use, during compounding, of bifunctional silica coupling agents having a moiety (e.g., a silyl group) reactive with the silica surface, and a moiety (e.g., a mercapto, amino, vinyl, epoxy or sulfur group) that binds to the elastomer. Well known examples of such silica coupling agents are mercaptosilanes and bis(trialkoxysilylorgano) polysulfides, such as bis(3-triethoxysilylpropyl) tetrasulfide which is sold commercially as Si69 by Degussa. Conventionally, the amount of a silica coupling agent, such as Si69, employed in the rubber compounding mixture is about 5% to about 20% by weight, based on the weight of the silica. The requirement for the large quantity of silica coupling agents, which are expensive, is one of several disadvantages of the use of these agents.
The coupling reaction of silica and Si69, as exemplary of the reactions between silica and the bis(trialkoxysilylorgano) polysulfides, can be divided into two separate reactions, i.e., the triethoxysilyl group of the Si69 reacts with the silanol groups on the silica during mixing, with the evolution of a considerable amount of ethanol, and the tetrasulfide chain reacts with the polymer under curing conditions to form rubber-to-filler bonds. A disadvantage of the use of polysulfides, having an average of about 3.8 or more sulfur groups in the polysulfide chain, is that the silica-silane reaction must be conducted at a temperature of over 140° C. to permit the reaction to take place rapidly, but below 165° C., if an irreversible thermal degradation of the polysulfane function of the coupling agent and premature curing (scorch) of the mixture are to be avoided. The upper processing temperature limitation results in a marked reduction in the mechanical activity of mixing which is essential for an optimum dispersion of the silica throughout the polymer matrix. Therefore, compared with carbon black-filled compositions, silica-silane tread compounds require a longer mixing time at a lower temperature to achieve improved performance, resulting in decreased production and increased expense.
Another disadvantage of the use of bis(trialkoxysilylorgano) tetrasulfide silica coupling agents is that the upper processing temperature limitation results in the retention, in the compounded product, of unreacted triethoxysilyl groups that are available to further react with the silica and moisture during storage, extrusion, tire build, and/or curing, resulting in an undesirable increase in the compound viscosity, and a shorter shelf life. Moreover, the continuing reaction in the compound evolves more (unevaporated) ethanol, resulting in porous zones or blisters which can form surface defects in the resulting formed rubber articles and/or can impair the dimensional stability of treads during extrusion and tire building. As a result, a low tread strip drawing speed must be maintained to ensure the drawn product conforms with specifications, resulting in a further decrease in production and concomitant increase in costs.
To address the expense and other problems related to bis(trialkoxysilylorgano) tetrasulfide and other bifunctional silica coupling agents, recent approaches to improving dispersion of silica in rubber compounds have been directed to reducing or replacing the use of such silica coupling agents by employing silica dispersing agents, such as monofunctional silica shielding agents (e.g., silica hydrophobating agents that chemically react with the surface silanol groups on the silica particles but are not reactive with the elastomer) and agents which physically shield the silanol groups, to prevent reagglomeration (flocculation) of the silica particles after compounding. For example, silica dispersing agents, such as alkyl alkoxysilanes, glycols (e.g., diethylene glycol or polyethylene glycol), fatty acid esters of hydrogenated and non-hydrogenated C
5
and C
6
sugars (e.g., sorbitan oleates, and the like), polyoxyethylene derivatives of the fatty acid esters, and fillers such as mica, talc, urea, clay, sodium sulfate, and the like, are the subjects of EP 890603 and EP 890606. Such silica dispersing agents can be used to replace all or part of expensive bifunctional silica coupling agents, while improving the processability of silica-filled rubber compounds by reducing the compound viscosity, increasing the scorch time, and reducing silica reagglomeration. To achieve a satisfactory cure of the rubber compound, the use of silica dispersing aids includes employing an increased amount of sulfur in a mixing step when curing agents are added to the composition, to replace sulfur that otherwise would have been supplied by a sulfur-containing silica coupling agent.
An advantage of the use of silica dispersing aids during compounding of elastomers with silica is that, unlike the bifunctional silica coupling agents described above, the dispersing agents do not contain sulfur and, thus, they can be used at high temperature, e.g., about 165° C. to about 200° C., in the absence of curing agents, without increasing the risk of premature curing. At these high temperatures, the reaction between the silica and alkoxysilyl groups of alkyl alkoxysilane silica dispersing agents is accelerated, resulting in an increase in the amount of alcohol evolved and evaporated during compounding, and a decrease in evolution of alcohol from the compound during storage, extrusion, curing and tire build.
SUMMARY OF THE INVENTION
Unexpectedly, it has been discovered that improvements in the tensile mechanical properties and dynamic viscoelastic properties of silica-reinforced sulfur vulcanized rubbers can be achieved by compounding polymers with silica at a temperature of 165° C. to about 200° C., in the presence of a silica dispersing aid and a very small amount of a bis(trialkoxysilylorgano) tetrasulfide silica coupling agent, such as Si69. The terms elastomer, polymer and rubber are used interchangeably herein, as is customary in the rubber industry. It has been unexpectedly discovered that compounding the elastomer with silica in the presence of the very small amount (e.g.,about 0.01% to about 1% by weight, based on the weight of the silica) of the bis(trialkoxysilylorgano) tetrasulfide silica coupling agent at the high compounding temperature, does not result in premature curing. The silica coupling agent facilitates binding of silica by the polymer, and the silica dispersing aid provides
Hergenrother William L.
Hilton Ashley S.
Lin Chenchy Jeffrey
Arndt Barbara
Bridgestone Corporation
Lee Rip A.
Palmer Meredith E.
LandOfFree
Silica-reinforced rubber compounded with an organosilane... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Silica-reinforced rubber compounded with an organosilane..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silica-reinforced rubber compounded with an organosilane... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3130902