Quantitative determination of nucleic acid amplification...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007800, C435S008000, C435S028000, C435S091500, C536S024300

Reexamination Certificate

active

06573054

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Significant morbidity and mortality are associated with infectious diseases. More rapid and accurate diagnostic methods are required for better monitoring and treatment of disease. Molecular methods using DNA probes, nucleic acid hybridizations and in vitro amplification techniques are promising methods offering advantages to conventional methods used for patient diagnoses.
Nucleic acid hybridization has been employed for investigating the identity and establishing the presence of nucleic acids. Hybridization is based on complementary base pairing. When complementary single stranded nucleic acids are incubated together, the complementary base sequences pair to form double stranded hybrid molecules. The ability of single stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid (RNA) to form a hydrogen bonded structure with a complementary nucleic acid sequence has been employed as an analytical tool in molecular biology research. The availability of radioactive nucleoside triphosphates of high specific activity and the
32
P labeling of DNA with T4 polynucleotide kinase has made it possible to identify, isolate, and characterize various nucleic acid sequences of biological interest. Nucleic acid hybridization has great potential in diagnosing disease states associated with unique nucleic acid sequences. These unique nucleic acid sequences may result from genetic or environmental change in DNA by insertions, deletions, point mutations, or by acquiring foreign DNA or RNA by means of infection by bacteria, molds, fungi, and viruses. Nucleic acid hybridization has, until now, been employed primarily in academic and industrial molecular biology laboratories. The application of nucleic acid hybridization as a diagnostic tool in clinical medicine is limited because of the frequently very low concentrations of disease related DNA or RNA present in a patient's body fluid and the unavailability of a sufficiently sensitive method of nucleic acid hybridization analysis.
One method for detecting specific nucleic acid sequences generally involves immobilization of the target nucleic acid on a solid support such as nitrocellulose paper, cellulose paper, diazotized paper, or a nylon membrane. After the target nucleic acid is fixed on the support, the support is contacted with a suitably labeled probe nucleic acid for about two to forty-eight hours. After the above time period, the solid support is washed several times at a controlled temperature to remove unhybridized probe. The support is then dried and the hybridized material is detected by autoradiography or by spectrometric methods.
When very low concentrations must be detected, the above method is slow and labor intensive, and nonisotopic labels that are less readily detected than radiolabels are frequently not suitable.
Recently, a method for the enzymatic amplification of specific segments of DNA known as the polymerase chain reaction (PCR) method has been described. This in vitro amplification procedure is based on repeated cycles of denaturation, oligonucleotide primer annealing, and primer extension by thermophilic polymerase, resulting in the exponential increase in copies of the region flanked by the primers. The PCR primers, which anneal to opposite strands of the DNA, are positioned so that the polymerase catalyzed extension product of one primer can serve as a template strand for the other, leading to the accumulation of a discrete fragment whose length is defined by the distance between the 5′ ends of the oligonucleotide primers.
Other methods for amplifying nucleic acids have also been developed. These methods include single primer amplification, ligase chain reaction (LCR), nucleic acid sequence based amplification (NASBA) and the Q-beta-replicase method. Regardless of the amplification used, the amplified product must be detected.
After amplification of a particular nucleic acid, a separate step is carried out prior to detecting amplified material. The various nucleic acid amplification procedures developed over the past few years greatly enhanced the sensitivity of detecting defined nucleic acid species in a test sample. The frequent formation of non-specific amplification products requires selective detection of the specific amplification product, which is often carried out using multiple probes complementary to regions within the specific amplified sequence.
One method for detecting nucleic acids is to employ nucleic acid probes that have sequences complementary to sequences in the amplified nucleic acid. One method utilizing such probes is described in U.S. Pat. No. 4,868,104. A nucleic acid probe may be, or may be capable of being, labeled with a reporter group or may be, or may be capable of becoming, bound to a support. Detection of signal depends upon the nature of the label or reporter group. If the label or reporter group is an enzyme, additional members of the signal producing system include enzyme substrates and so forth.
Usually, the probe is comprised of natural nucleotides such as ribonucleotides and deoxyribonucleotides and their derivatives although unnatural nucleotide mimetics such as peptide nucleic acids (PNA) and oligomeric nucleoside phosphonates are also used. Commonly, binding of the probes to the target is detected by means of a label incorporated into the probe. Binding can be detected by separating the bound probe from the free probe and detecting the label. For this purpose it is usually necessary to form a sandwich comprised of the labeled probe, the target and a probe that is or can become bound to a surface. Alternatively, binding can be detected by a change in the signal-producing properties of the label upon binding, such as a change in the emission efficiency of a fluorescent or chemiluminescent label. This permits detection to be carried out without a separation step.
Homogeneous methods that have been utilized include the Taqman method used by Roche Molecular Diagnostics. In this approach a probe is used that is labeled with a fluorescer and a quencher. The polymerase used in PCR is capable of cutting the probe when it is bound to the target DNA and causing separation of these labels. Changes in the polarization of fluorescence upon binding of a fluorescer-labeled probe to target DNA are used by Becton Dickenson to detect the formation of DNA in Strand Displacement Amplification (SDA). Binding of two probes, one with a chemiluminescer bead and one with a sensitizer bead has been used by Behring Diagnostics Inc. for detection of DNA produced by PCR and single primer amplification. Binding of an electroluminescent ruthenium labeled probe to a biotinylated target RNA and capture of the complex on magnetic beads has been used by Organon Teknika for detection of RNA produced in NASBA. GenProbe has carried out detection of RNA by means of an acridinium labeled probe that changes chemiluminescence efficiency when the probe is bound to target RNA.
Each of the above methods has limitations. Where two or more probes are required for detection and quantitation of products of specific nucleic acid amplifications, increasing the amount of target increases the signal up to a point and then the signal fall off (the “prozone” phenomenon). In general, loss of signal is realized under the prozone phenomenon when the analyte concentration exceeds probe concentration. Methods that require a capturable ligand in the target cannot be used on non-amplified nucleic acids nor are all amplification methods capable of introducing a ligand into the amplified product. Fluorescence polarization changes on binding are small and the sensitivity is therefore limited. Taqman is subject to problems with emission form the quencher, which limits sensitivity; GenProbe's chemiluminescent probe requires reagent additions prior to detection.
It is desirable to have a sensitive, simple method for amplifying and detecting nucleic acids preferably, in a homogeneous format. The method should minimize the number and complexity of steps and reagents and avoid the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Quantitative determination of nucleic acid amplification... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Quantitative determination of nucleic acid amplification..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantitative determination of nucleic acid amplification... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3128765

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.