Thermal recording system for post-heating a thermosensitive...

Incremental printing of symbolic information – Thermal marking apparatus or processes – Preheating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S185000

Reexamination Certificate

active

06646665

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of and a system for thermally recording an image or the like on a thermo-sensitive recording medium using a laser beam where the thermo-sensitive recording medium has been preheated.
2. Description of the Related Art
A thermal recording system is widespread which applies heat energy to a heat- or thermo-sensitive recording medium so as to record an image or the like thereon. In particular, a thermal recording system capable of recording an image in continuous tone at a high speed by using a laser as a heat source has been proposed (see Japanese Patent Application Laid-Open Publication Nos. 50-23617, 58-94494, 62-77983 and 62-78964, as examples).
As a thermo-sensitive recording material or medium applicable to such a thermal recording system and capable of recording satisfactory images in high quality, the present applicant has developed a medium which has leuco dyes, a developer and light-absorbing dyes all provided on a support and produces or develops color at a density corresponding to the energy of applied heat (see Japanese Patent Application Nos. 3-62684 and 3-187494, for example).
This type of thermo-sensitive recording medium has a thermo-sensitive layer formed on a support by dissolving a microcapsule containing at least leuco dyes, a developer and light-absorbing dyes in an organic solvent insoluble or soluble in water and thereafter applying a coating liquid containing particles emulsified and dispersed therein on the resultant product.
The leuco dyes have the properties for donating electrons or accepting protons such as protonic acids so as to give rise to color. The leuco dyes are normally substantially colorless and have partial skeletons such as lactone, lactam, sultone, spiropyran, ester, amide, etc. Compounds held in contact with the developer so as to allow these partial skeletons to open the ring or produce cleavage are used as the leuco dyes. Specific examples of the compounds may include crystal violet lactone, benzoyl leucomethylene blue, malachite green lactone, rhodamine B lactam, 1,3,3-trimethyl-6′-ethyl-8′-butoxyindolinobenzospiropyran, etc.
The developers corresponding to these leuco dyes, include acidic substances such as phenolic compounds, organic acids or metallic salt containing the same, oxybenzoate ester, etc. The developers may preferably have a melting point range of from 50° C. to 250° C. Particularly preferred is phenol or an organic acid insoluble in water having a melting point range of from 60° C. to 200° C. Specific examples of the developers have been described in Japanese Patent Application Laid-Open Publication No. 61-291183, for example.
Preferred as the light-absorbing dyes, are those which absorb less light in the visible range and are particularly excellent in the rate of absorption of wavelengths of radiation in the infrared region. Examples of the dyes may include cyanine dyes, phthalocyanine dyes, pyrylium and thiopyrylium dyes, azulenium dyes, squarylium dyes, metal complex dyes containing Ni, Cr, etc., naphthoquinone and anthraquinone dyes, indophenol dyes, indoaniline dyes, triphenylmethane dyes, triallylmethane dyes, aminium and diimmonium dyes, nitroso compounds, etc. Of these, those in which the absorption rate of light in the near infrared region, (with a wavelength range of from 700 nm to 900 nm) is high, are particularly preferred in view of the fact that a semiconductor laser for generating near infrared light has been put to practical use.
Since, on the other hand, the thermo-sensitive recording medium referred to above is kept in a stable conserved state, it does not develop color when the heat energy is low in level. Accordingly, a substantial quantity of heat energy is required to obtain a desired color-developed state. As a result, the dynamic range becomes narrow by a threshold value corresponding to the heat energy required to produce or develop the color and hence difficulties arise in the production of a high-tonal image. Further, a load imposed on the thermal recording system for developing the color greatly increases.
The thermo-sensitive recording medium develops colors to form a visual image depending on the thermal energy applied thereto. It is known that the density of the developed image increases with time at a normal temperature after the visual image has been recorded. Therefore, there is a problem of an image density that varies from the image density at the time immediately after recording the image, depending on the time elapsed after the recording.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a method of and a system for thermally recording an image or the like wherein the dynamic range of a laser beam used for recording the image can be sufficiently ensured to thereby obtain an image in high gradation and with high accuracy and any load imposed on a heating-beam generating means for generating the laser beam can be reduced, thereby making it possible to simplify the system, reduce its cost and stabilize the recorded image or the like.
To achieve the above object, there is provided a thermal recording system comprising preheating means for preheating a thermo-sensitive recording medium which has leuco dyes, a developer and light-absorbing dyes all provided on a support, which develops color at a density corresponding to a thermal energy applied thereto, with a thermal energy less than a color-developing thermal energy, and heating-beam generating means for scanning the thermo-sensitive recording medium with a laser beam so as to heat the thermo-sensitive recording medium with the predetermined color-developing thermal energy.
In the thermal recording system according to the present invention, the leuco dyes, the developer and the light-absorbing dyes are provided on the support. Further, the thermo-sensitive recording medium, which develops the color in continuous tone at the density corresponding to the applied thermal energy, is preheated with a thermal energy near but less than the color-developing thermal energy. In this condition, desired color-development can be effected by scanning the thermo-sensitive recording medium with the laser beam emitted from the heating-beam generating means.
Here, the preheat temperature is detected and controlled so as to reach a desired temperature. As a result, the heating for the color development can be efficiently and accurately effected.
Further, a desired preheat temperature can be obtained by detecting the density of a preheat-type color-developing portion of the thermo-sensitive recording medium and setting the detected density to a predetermined density under temperature control.
To achieve the above object, there is provided a method of thermally recording an image on a thermo-sensitive recording medium which develops color in continuous tone at a density corresponding to a thermal energy applied thereto comprising the steps of a first step of heating said thermo-sensitive recording medium with a predetermined color-developing thermal energy by a laser beam modified according to information to be recorded, and a second step of heating said thermo-sensitive recording medium with a thermal energy less than the predetermined color-developing thermal energy.
With the above method, the density of color developed by the thermo-sensitive recording medium can be stabilized.
To achieve the above object, there is also provided a method of thermally recording an image on a thermo-sensitive recording medium which develops color in continuous tone at a density corresponding to thermal energy applied thereto comprising the steps of, a first step of preheating said thermo-sensitive recording medium with thermal energy less than a predetermined color developing thermal energy, a second step of applying the color developing thermal energy to the preheated thermo-sensitive recording medium by a laser beam modified according to information to be recorded, and a third step of heating the thermo-sensitive recording med

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermal recording system for post-heating a thermosensitive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermal recording system for post-heating a thermosensitive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal recording system for post-heating a thermosensitive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3128132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.