Method and arrangement for compensating for imaging defects

Radiant energy – Photocells; circuits and apparatus – Photocell controls its own optical systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S208100, C250S234000, C250S235000

Reexamination Certificate

active

06608295

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority of German Patent Application No. 101 15 578.6, filed Mar. 29, 2001, incorporated by reference herein.
FIELD OF THE INVENTION
The invention relates to a method for compensating for imaging defects in scanning microscopy and to a scanning microscope.
BACKGROUND OF THE INVENTION
In scanning microscopy, a specimen is illuminated by a light beam in order to observe the reflected or fluorescent light thereupon emitted by the specimen, laser beams usually being used for illumination. In this case, a specimen is scanned by means of a finely focused light beam. The focus of the illumination light beam is moved in a specimen plane with the aid of a controllable beam deflection device, which generally has two tiltable mirrors. In this case, the deflection axes are usually perpendicular to one another, so that one mirror deflects the incident beam in the x-direction and the other deflects the beam in the y-direction. The tilting of the mirrors is achieved for example with the aid of galvanometer actuating elements.
Especially in confocal scanning microscopy, a specimen is scanned with the focus of a light beam in three dimensions. A confocal scanning microscope generally comprises a light source, a focusing optic by which the light from the source is focused onto a pinhole aperture—the so-called excitation aperture—a beam splitter, a beam deflection device for beam control, a microscope optic, a detection aperture and the detectors for registering the detection or fluorescent light. The illumination light is coupled in via a beam splitter. The fluorescent or reflected light coming from the specimen travels back via the beam deflection device to the beam splitter, and passes through the latter in order subsequently to be focused onto the detection aperture, behind which the detectors, usually photomultipliers, are situated. Detection light which does not originate directly from the focus region takes a different light path and does not pass through the detection aperture, so that point information is obtained which leads to a three-dimensional image by sequential scanning of the specimen.
A three-dimensional image is usually obtained by layer-by-layer imaging. In this case, the specimen is scanned in the axial direction (z-direction) usually by so-called specimen scanning, in which the specimen is moved in the z-direction with the aid of the specimen stage. However, this can also be achieved by displacing the objective in the axial direction, which is accompanied by a displacement of the focus of the illumination beam.
The reflected or fluorescent light emitted by the specimen when illuminated travels via a beam splitter to a detector having an entry pinhole. The power of the light coming from the specimen is measured depending on the position of the scanning beam preferably at fixed time intervals. As a result, it is possible to scan the specimen raster point by raster point in three dimensions and to determine for each scanning point a measured value which is representative of this specimen point.
With the lasers that are usually used as illumination sources in scanning microscopes, the specimen can be optimally illuminated for achieving the desired result. However, image defects always accompany the imaging of the specimen by the optical components of the microscope that are involved, which image defects may be caused by aberration, for example. Said imaging defects can be classified into geometrical and chromatic imaging defects. In monochromatic microscopy, in which the specimen is illuminated by the light of a single wavelength, in order to observe the light reflected from the specimen, only the geometrical imaging defects have to be taken into account. In fluorescence microscopy or when using a polychromatic illumination source, the chromatic imaging defects must additionally be taken into account. The image defects can in part be avoided by using high-quality, corrected optical elements. However, such high-quality elements, in particular complex corrected microscope objectives, are very expensive. Moreover, such corrected optical elements usually comprise more optical sub elements than optical elements which are corrected only slightly or not at all; thus, apochromatic microscope objectives usually comprise 10 to 15 different lenses. The multiplicity of optical sub elements means that the transmissivity of the optical system, that is to say of the optic, inevitably suffers compared with elements that are not corrected or are only slightly corrected.
SUMMARY OF THE INVENTION
It is an object of the present invention, therefore, to propose a simple and cost-effective method for compensating for imaging defects.
This object is achieved by a method for compensating for imaging defects in scanning microscopy comprising the steps of:
scanning a specimen by a light beam at raster points, which define a scanning line, whereby the light beam is guided by a scanning device through a microscope optic,
determining an imaging defect of the microscope optic,
determining a correction value for at least one raster point from the imaging defect,
calculating a corrected scanning line with respect to the correction value,
scanning the specimen at raster points defined by the corrected scanning line.
It is another object of the invention to disclose a scanning microscope with improved image quality.
This object is achieved by a scanning microscope comprising:
a light source for emitting a light beam,
a microscope optic for focusing the light beam onto a specimen,
a scanning device for scanning the specimen by the light beam at raster points, which define a scanning line,
means for determining the imaging defect of the microscope optic,
means for determining correction values for at least one raster point,
means for calculating a corrected scanning line from the correction values.
The invention has recognized that imaging defects are compensated for by suitably influencing the control of the impinging of the scanning radiation on the specimen. In particular, a beam deflection device provided for influencing the point at which the scanning radiation impinges can be influenced in accordance with the correction values determined. In the case of specimen scanning, however, it is also possible for the control of the position of the specimen stage on which the specimen to be examined is applied to be influenced in this way. As an alternative or in addition to this, it is also possible to influence the scanning speed in accordance with the correction values. This means that the imaging defects that are always inherently present in optical systems or optics can already be compensated for during the image recording. In this case, the correction value determined can be used in such a way that the scanning speed and/or the scanning path are influenced in such a way that the imaging defects of the optics are compensated for.
In order to determine the imaging defect, preferably the optic used is firstly measured. For this purpose, it is possible for a specimen that is known sufficiently precisely to be scanned in a reference measurement. In a further method step, the image of the specimen is measured and examined for image defects. A special algorithm, which can be realized e.g. in the form of an image processing program, can then determine a correction value for each raster point. By way of example, for this purpose, reference image data can be compared with the image data actually determined and a correction value can thus be determined for each raster point. This correction value thus determined is converted into a control correction signal in a further step and then taken into account in the scanning of a specimen.
As described, the correction value can be determined either in one step or iteratively. An iterative procedure may also be based on beginning with randomly determined correction values in order gradually to bring about an optimization in further iteration steps. A genetic algorithm is preferably used for this.
A scanning microsc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and arrangement for compensating for imaging defects does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and arrangement for compensating for imaging defects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and arrangement for compensating for imaging defects will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.