Devices, systems and methods for creating sutureless...

Surgery – Instruments – Surgical mesh – connector – clip – clamp or band

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S151000, C604S164040, C604S164060, C604S167060, C604S171000

Reexamination Certificate

active

06669708

ABSTRACT:

FIELD OF THE INVENTION
The present invention is concerned generally with minimally invasive methods for accessing the vascular system and hollow organs of the body; and is directed to an assembly and methodology for creating sutureless vascular anastomoses and hollow organ communication channels on-demand.
BACKGROUND OF THE INVENTION
Coronary artery disease is the single leading cause of human mortality and is annually responsible for over 900,000 deaths in the United States alone. Additionally, over 3 million Americans suffer chest pain (angina pectoris) because of it. Typically, the coronary artery becomes narrowed over time by the build up of fat, cholesterol and blood clots. This narrowing of the artery is called arteriosclerosis; and this condition slows the blood flow to the heart muscle (myocardium) and leads to angina pectoris due to a lack of nutrients and adequate oxygen supply. Sometimes it can also completely stop the blood flow to the heart causing permanent damage to the myocardium, the so-called “heart attack.”
The conventional treatment procedures for coronary artery disease vary with the severity of the condition. If the coronary artery disease is mild, it is first treated with diet and exercise. If this first course of treatment is not effective, then the condition is treated with medications. However, even with medications, if chest pain persists (which is usually secondary to development of serious coronary artery disease), the condition is often treated with invasive procedures to improve blood flow to the heart. Currently, there are several types of invasive procedures: (1) Catheterization techniques by which cardiologists use balloon catheters, atherectomy devices or stents to reopen up the blockage of coronary arteries; or (2) Surgical bypass techniques by which surgeons surgically place a graft obtained from a section of artery or vein removed from other parts of the body to bypass the blockage.
Conventionally, before the invasive procedures are begun, coronary artery angiography is usually performed to evaluate the extent and severity of the coronary artery blockages. Cardiologists or radiologists thread a thin catheter through an artery in the leg or arm to engage the coronary arteries. X-ray dye (contrast medium) is then injected into the coronary artery through a portal in the catheter, which makes the coronary arteries visible under X-ray, so that the position and size of the blockages in the coronary arteries can be identified. Each year in U.S.A., more than one million individuals with angina pectoris or heart attack undergo coronary angiographies for evaluation of such coronary artery blockages. Once the blocked arteries are identified, the physician and surgeons then decide upon the best method to treat them.
In the surgical correction of vascular disease in the human body, it is frequently necessary to attach blood vessels to each other. A native blood vessel may be diseased with conditions that cause blockages, such as atherosclerosis. In this situation, it is frequently necessary to reroute the blood that would ordinarily traverse the diseased vessel via the creation of a vascular bypass. The conduit used to form this bypass around an obstructed segment may be another blood vessel native to the patient, such as a vein or artery harvested from elsewhere in the body; or may be a man-made conduit of either synthetic or biological material. Methods for attaching blood vessels to each other include: end to end attachments, where the result is a linear conduit for blood flow with the bypassing vessel and the vessel to which it is attached lying in parallel, in-line with each other; side to side attachments, where the result is a staggered, linear channel, where the bypassing vessel and the vessel to which it is attached are in parallel but offset by the width of one of the blood vessels; and end to side attachments, where the bypassing vessel meets the vessel which it is to supply with flow at some angle of less than 180 degrees, and typically approximately 90 degrees and often as a ‘T’ or ‘L’ or ‘H’ type of connection.
It is useful here to understand in depth what the traditional coronary arterial bypass entails and demands both for the patient and for the cardiac surgeon. In a standard coronary bypass operation, the surgeon must first make a foot-long incision in the chest and split the breast bone of the patient. The operation requires the use of a heart-lung machine that keeps the blood circulating while the heart is being stopped and the surgeon places and attaches the bypass grafts. To stop the heart, the coronary arteries also have to be perfused with a cold potassium solution (cardioplegia). In addition, the body temperature of the patient is lowered by cooling the blood as it circulates through the heart-lung machine in order to preserve the heart and other vital organs. Then, as the heart is stopped and a heart-lung machine pumps oxygenated blood through the patient's body, the surgeon makes a tiny opening into the front wall of the target coronary artery with a very fine knife (arteriotomy); takes a previously excised saphenous vein (a vein from a leg) or an internal mammary artery (an artery from the chest); and sews the previously excised blood vessel to the coronary artery. Synthetic substitutes for a naturally occurring blood vessel are available and often used.
To create the anastomosis at the aorta, the ascending thoracic aorta is first partially clamped using a curved vascular clamp to occlude the proper segment of the ascending aorta; and a hole is then created through the front wall of the aorta to anchor the vein graft (or synthetic substitute) with sutures. The graft bypasses the blockage in the coronary artery and restores adequate blood flow to the heart. After completion of the grafting, the patient is taken off of the heart-lung machine and the patient's heart starts beating again. Most of the patients can leave the hospital in about 6 days after the surgical procedure.
It will be noted that coronary artery bypass surgery is considered a definitive method for treating coronary arterial disease because all kinds of obstructions cannot be treated by angioplasty; and because a recurrence of blockages in the coronary arteries even after angioplasty is not unusual. Also coronary artery bypass surgery usually provides for a longer patency of the grafts and the bypassed coronary arteries in comparison with the results of an angioplasty procedure. However, traditional coronary artery bypass surgery is a far more complicated procedure, having need of a heart-lung machine and a stoppage of the heart. Also, it is a more invasive procedure and is more expensive to perform. Therefore, cardiac surgeons have recently developed an alternative to the standard bypass surgery, namely “minimally invasive bypass operation” (MIBO) in order to reduce the risks and the cost associated with the surgery. Also, the MIBO is performed without use of a heart-lung machine or the stopping of the heart. Some of the current methods for creating these connections include handsewn surgical anastomoses, where a surgeon places a series of surgical knots around the circumference of the vascular connection, forming a liquid-tight connection; as well as a variety of vascular staple type devices, where mechanical apparatii are used to effect the connection, generally using a two or more part apparatus comprising the staple introducer and an ‘anvil’ type of part against which the staples are curved back, bent, or otherwise fixed into position around the circumference of the vascular connection.
Another approach has been the introducer catheter based methods and apparatii for the creation of an end-to-side vascular connection (anastomosis) using an implanted device comprising a deformable flange or retained portion and deformable flange, to which a biological or synthetic conduit has been pre-attached ex-vivo; and a variety of configurations for introducer mechanisms and systems for, inserting this implantable device into the side of the blood vessel. F

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices, systems and methods for creating sutureless... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices, systems and methods for creating sutureless..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices, systems and methods for creating sutureless... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120992

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.