Process for manufacture of triboelectrically charged nonwovens

Gas separation: apparatus – Electric field separation apparatus – Electric charge produced by friction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C055S486000, C055S528000, C055SDIG002, C055SDIG005, C055SDIG003, C096S066000, C096S069000, C264S258000, C264SDIG004, C442S403000

Reexamination Certificate

active

06547860

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention involves a process for manufacture of a triboelectrically charged nonwoven material and its application.
2. Description of Related Art
Such filter media are composed of a fiber blend comprising at least two different fiber polymers, which are so different in the electro-negativity of their surface that they are provided with electrostatic charges during web manufacture through carding and through the subsequent bonding by means of a mechanical needle process. Such media have already been described in documents EP 0 246 811 and EP 0 674 933 and are widely used as so-called “triboelectrically charged electret filters” for aerosol filtration purposes.
In order to produce filter media on the basis of these processes, the fiber finish must be washed off the fibers prior to carding, and all the antistatically active constituents as wall as auxiliary agents, which normally ensure a good workability of the fibers on carding machines, must be removed.
However, this entails certain drawbacks like a significantly poorer workability of the washed fiber blend compared with standard fibers coated with fiber finish, and it has been impossible so far to produce “triboelectrically charged electret filters” on the basis of fine fibers (mean fiber titer ≦1.7 dtex).
Problems arise particularly when the web is manufactured in accordance with document EP 0 246 811 using a carding engine. A comb, permitting to separate the web from the card and to transfer it on to a conveyor, is used as a card doffer system of the card cylinder. Although strong electrical charges are repeatedly released on the card doffer as a result of the combing mechanism, thus resulting in frequent failures of the fleece stacker plate, this technology has prevailed over the usual roll doffer system.
Web bonding has been performed by mechanical needling on the basis of the processes described so far. On webs exhibiting a higher mass per unit area, proper bonding is achieved by mechanical fiber interlacing, even if the needles leave unwanted channels, thus reducing the filtering efficiency of the nonwoven material.
With webs featuring a low mass per unit area, the needling technology is unable, however, to achieve proper bonding properties. If the mass per unit area falls below 100 g/m
2
, the thin web will offer the needles only a weak resistance, and it will therefore be difficult to interface the fibers in such a way that they trigger a sufficiently high force flow of the fibers.
This is why the needling technology process can produce light “triboelectrically charged electret filters” (mass per unit area <50 g/m
2
only if it is reinforced by a carrier which will offer a sufficient resistance during the needling process of the loose web fibers.
Carrier materials are usually lightweight fabrics, scrims and nonwovens (preferably spunbonded nonwovens). Although these media only provide a negligible contribution to the filtration of fine aerosols, they are primarily used to establish a connection between the web and the carrier, and to meet the minimum requirements in terms of tensile strength for this nonwoven material.
The disadvantages inherent to the use of carriers are the costs involved as well as a poorer porosity of the filter media.
Even if lightweight webs can sufficiently be bonded by using a carrier material on the basis of the processes described here, the regularity of the web structure (fiber distribution) remains unsatisfactory. When using standard fiber blends of 2 to 3 dtex and applying cross-laying technology, the web already presents an open and uneven aspect as a result of the coarse fibers and matting technology applied because cross-laying technology causes the web to be deposited with a V-shape on to the feeding device leading to the bonding unit, and creates therefore corresponding nonhomogeneity inside the fleece. Moreover, the irregularities are intensified by the mechanical needling process, as the needles cause entire sections of the web to be shifted, thus forming larger perforations.
However, an irregular web structure is inappropriate for filter applications because an uneven fiber distribution or even perforations strongly affect the filtering efficiency.
The low density of lightweight triboelectrically charged nonwovens appeared to be a further drawback. In connection with heavy needlefelts, a density of 0.25 g/cm
3
can be achieved only by means of mechanical needling. However, this value is strongly reduced if webs of less than 10 m/m
2
are bonded by means of needle technological means. In this case, the fibers will form large loops on both surfaces and produce voluminous nonwovens with a density of 0.03-0.07 g/cm
3
.
The low density of lightweight triboelectrically charged needlefelts poses no problems as long as they are used in a plane shape. Should they however be arranged inside filter components, a maximum of filtration area will have to be efficiently accommodated within a limited space. In such cases, voluminous media are at a serious disadvantage as compared with thinner products.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a process for the manufacture of lightweight triboelectrically charged nonwovens and their applications.
These and other objects of the invention are achieved by drying a fiber blend consisting of polyacrylnitrile fibers with a titer of ≦1.7 dtex and of polyolefine fibers with a titer of ≦1.7 dtex, freed from lubricating and antistatic agents, down to a moisture content of <1% by weight, and by carding it into a triboelectrically charged web featuring a mass per unit area of 15-80 g/m
2
on a longitudinal or randomizing card. In this case, the web is taken off by two simultaneously running rolls and a transfer roll, thus causing the web to be deposited in machine direction on to a conveyor, and the bonding procedure takes place directly inside a bonding unit, the unbonded web being forwarded via 1 to 3 points of transfer only.
DETAILED DESCRIPTION OF THE INVENTION
The use of a longitudinal or randomizing card and the laying of the web in carding direction make it possible to prevent the fleece from being distorted in the cross lapper and the weight from fluctuating as a result of the V-shaped depositing plate.
The usual systems incorporating a comb or a doffer roll exhibiting a small diameter are not selected for separating the web from the carding engine, but a roll doffer system equipped with two simultaneously running rolls featuring a larger diameter (>200 mm), the first one acting as a compacting roll and the second one as a doffer roll, plus a fluted transfer roll. It is surprising to observe that this doffer system made it possible to card finely titered fiber blends with a high fleece regularity as well, and to place them on to the depositing belt.
In order to prevent the carded web from being elongated in machine direction after being laid down on the conveyor belt, it is necessary to opt for a short distance between the card and the bonding unit, and there must be only a minimum number of points of transfer between the card and the bonding unit. Ideally, a continuous conveyor belt should guide the web directly from the card to the bonding unit.
The best results are attained through bonding operations based on a water-jet needling process making it possible to bond lightweight and finely titered triboelectrically charged webs properly, without affecting significantly the structure of the web.
Benefits are also provided, as an alternative, by grid-shaped thermal bonding of the web by means of an ultrasonic calendering machine or by using heated calender rolls.
The bonding processes, water-jet needling procedures and thermal grid-shaped bonding operations involved in the present invention provide not only the benefit of preventing the destruction or perforation of the web as a result of the bonding process, but also the advantage of producing a more compacted nonwoven material.
Nonwovens manufactured in this way are thinner than equivalent mechanica

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for manufacture of triboelectrically charged nonwovens does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for manufacture of triboelectrically charged nonwovens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for manufacture of triboelectrically charged nonwovens will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3109556

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.