Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2002-09-20
2003-08-19
Getzow, Scott M. (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
Reexamination Certificate
active
06609023
ABSTRACT:
BACKGROUND OF THE INVENTION
Heart disease is the leading cause of death in the United States. A heart attack (also known as an Acute Myocardial Infarction (AMI)) typically results from a thrombus that obstructs blood flow in one or more coronary arteries. AMI is a common and life-threatening complication of coronary heart disease. The sooner that perfusion of the myocardium is restored (e.g., with injection of a thrombolytic medication such as tissue plasminogen activator (tPA)), the better the prognosis and survival of the patient from the heart attack. The extent of damage to the myocardium is strongly dependent upon the length of time prior to restoration of blood flow to the heart muscle.
Myocardial ischemia is caused by a temporary imbalance of blood (oxygen) supply and demand in the heart muscle. It is typically provoked by physical activity or other causes of increased heart rate when one or more of the coronary arteries are obstructed by atherosclerosis. Patients will often (but not always) experience chest discomfort (angina) when the heart muscle is experiencing ischemia.
Acute myocardial infarction and ischemia may be detected from a patient's electrocardiogram (ECG) by noting an ST segment shift (i.e., voltage change) over a relatively short (less than 5 minutes) period of time. However, without knowing the patient's normal ECG pattern detection from standard 12 lead ECG can be unreliable. In addition, ideal placement of subcutaneous electrodes for detection of ST segment shifts as they would relate to a subcutaneously implanted device has not been explored in the prior art.
Fischell et al in U.S. Pat. Nos. 6,112,116 and 6,272,379 describe implantable systems for detecting the onset of acute myocardial infarction and providing both treatment and alarming to the patient. While Fischell et al discuss the detection of a shift in the S-T segment of the patient's electrogram from an electrode within the heart as the trigger for alarms; it may be desirable to provide more sophisticated detection algorithms to reduce the probability of false positive and false negative detection. In addition while these patents describe some desirable aspects of programming such systems, it may be desirable to provide additional programmability and alarm control features.
Although anti-tachycardia pacemakers and Implantable Cardiac Defibrillators (ICDs) can detect heart arrhythmias, none are currently designed to detect ischemia and acute myocardial infarction events independently or in conjunction with arrhythmias.
In U.S. Pat. Nos. 6,112,116 and 6,272,379 Fischell et al, discuss the storage of recorded electrogram and/or electrocardiogram data; however techniques to optimally store the appropriate electrogram and/or electrocardiogram data and other appropriate data in a limited amount of system memory are not detailed.
In U.S. Pat. No. 5,497,780 by M. Zehender, a device is described that has a “goal of eliminating . . . cardiac rhythm abnormality.” To do this, Zehender requires exactly two electrodes placed within the heart and exactly one electrode placed outside the heart. Although multiple electrodes could be used, the most practical sensor for providing an electrogram to detect a heart attack would use a single electrode placed within or near to the heart.
Zehender's drawing of the algorithm consists of a single box labeled ST SIGNAL ANALYSIS with no details of what the analysis comprises. His only description of his detection algorithm is to use a comparison of the ECG to a reference signal of a normal ECG curve. Zehender does not discuss any details to teach an algorithm by which such a comparison can be made, nor does Zehender explain how one identifies the “normal ECG curve”. Each patient will likely have a different “normal” baseline ECG that will be an essential part of any system or algorithm for detection of a heart attack or ischemia.
In addition, Zehender suggests that an ST signal analysis should be carried out every three minutes. It may be desirable to use both longer and shorter time intervals than 3 minutes so as to capture certain changes in ECG that are seen early on or later on in the evolution of an acute myocardial infarction. Longer observation periods will also be important to account for minor slowly evolving changes in the “baseline” ECG. Zehender has no mention of detection of ischemia having different normal curves based on heart rate. To differentiate from exercise induced ischemia and acute myocardial infarction, it may be important to correlate ST segment shifts with heart rate or R—R interval.
Finally, Zehender teaches that “if an insufficient blood supply in comparison to the reference signal occurs, the corresponding abnormal ST segments can be stored in the memory in digital form or as a numerical event in order to be available for associated telemetry at any time.” Storing only abnormal ECG segments may miss important changes in baseline ECG. Thus it is desirable to store some historical ECG segments in memory even if they are not “abnormal”.
The Reveal™ subcutaneous loop Holter monitor sold by Medtronic uses two case electrodes spaced by about 3 inches to record electrocardiogram information looking for arrhythmias. It has no real capability to detect ST segment shift and its high pass filtering would in fact preclude accurate detection of changes in the low frequency aspects of the heart's electrical signal. Also the spacing of the electrodes it too close together to be able to effectively detect and record ST segment shifts. Similarly, current external Holter monitors are primarily designed for capturing arrhythmia related signals from the heart.
Although often described as an electrocardiogram (ECG), the stored electrical signal from the heart as measured from electrodes within the body should be termed an “electrogram”. The early detection of an acute myocardial infarction or exercise induced myocardial ischemia caused by an increased heart rate or exertion is feasible using a system that notes a change in a patient's electrogram. The portion of such a system that includes the means to detect a cardiac event is defined herein as a “cardiosaver” and the entire system including the cardiosaver and the external portions of the system is defined herein as a “guardian system.”
Furthermore, although the masculine pronouns “he” and “his” are used herein, it should be understood that the patient or the medical practitioner who treats the patient could be a man or a woman. Still further the term; “medical practitioner” shall be used herein to mean any person who might be involved in the medical treatment of a patient. Such a medical practitioner would include, but is not limited to, a medical doctor (e.g., a general practice physician, an internist or a cardiologist), a medical technician, a paramedic, a nurse or an electrogram analyst. A “cardiac event” includes an acute myocardial infarction, ischemia caused by effort (such as exercise) and/or an elevated heart rate, bradycardia, tachycardia or an arrhythmia such as atrial fibrillation, atrial flutter, ventricular fibrillation, and premature ventricular or atrial contractions (PVCs or PACs).
For the purposes of this specification, the terms “detection” and “identification” of a cardiac event have the same meaning.
For the purpose of this invention, the term “electrocardiogram” is defined to be the heart electrical signals from one or more skin surface electrode(s) that are placed in a position to indicate the heart's electrical activity (depolarization and repolarization). An electrocardiogram segment refers to the recording of electrocardiogram data for either a specific length of time, such as 10 seconds, or a specific number of heart beats, such as 10 beats. For the purposes of this specification the PQ segment of a patient's electrocardiogram is the typically flat segment of a beat of an electrocardiogram that occurs just before the R wave.
For the purpose of this invention, the term “electrogram” is defined to be the heart electrical signals from one or mo
Fischell David R.
Fischell Robert E.
Fischell Tim A.
Harwood Jonathan
Angel Medical Systems, Inc.
Getzow Scott M.
LandOfFree
System for the detection of cardiac events does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for the detection of cardiac events, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for the detection of cardiac events will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3108638