Apparatus for tracking and recording vital signs and...

Data processing: structural design – modeling – simulation – and em – Simulating nonelectrical device or system – Mechanical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S003000, C702S173000, C702S176000, C177S025140

Reexamination Certificate

active

06546363

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention generally relates to the identification of anomalies in the operation of a vehicle and, more particularly, to the collection and analysis of data derived during operation of a vehicle that provides a basis for diagnosing the cause of anomalies in the vehicle's operation.
BACKGROUND OF THE INVENTION
All vehicles today have various sensors for identifying and tracking critical “vital signs” of a vehicle. In their simplest form, these sensors include an oil pressure gauge, a water temperature gauge and an electrical system charging/discharging gauge. In more sophisticated vehicle systems, these vital signs may be expanded to include the condition of the brake system, transmission shift indicator, and so forth. In fact, for every component or subassembly of a vehicle, a sensor can be adapted for indicating whether that component or subassembly is operating in a routine or “critical” state—i.e., a state that if maintained will cause the component or subassembly to fail.
Like the monitoring of vital signs, it is also known to employ sensors on-board a vehicle to track performance of the vehicle. An example of such an on-board system is illustrated in U.S. Pat. No. 4,839,835 to Hagenbuch. By sensing and monitoring vehicle parameters related to the task being performed by a vehicle, a record can be established that describes how effectively the vehicle is performing and provides the operator of the vehicle with information from which future operations of the vehicle can be planned to maximize performance. Task-related parameters are parameters such as load carried by a vehicle, grade of the road on which the vehicle is operating, loads hauled per hour, tons hauled per hour, and the like. In general, the task-related parameters are those parameters that provide indicia of the work done by the vehicle, where work is proportional to the weight of a vehicle multiplied by distance it is carried. Production performance of the vehicle is generally evaluated in the amount of work done by the vehicle in a unit of time—e.g., miles per hour, tons per hour and the like.
Today, there are many companies producing equipment for monitoring the state of health of a vehicle's components and subassemblies—i.e., its “vital signs.” There are also many companies producing vehicle production monitoring equipment. However, to the best of applicant's knowledge, none of these products has integrated vehicle production with vehicle condition. It is expensive to operate all vehicles and, in particular, large load-carrying vehicles such as trucks. Accordingly, in an effort to improve the up time or operating time of the vehicle, it is very important to monitor the critical vital signs of a vehicle. However, in addition to simply monitoring these vehicle critical vital-signs, it is even more important to know what caused a vehicle vital sign to reach a critical condition that, if continued, will cause failure of a component or subassembly. When taken as disparate items, tracking either vital signs or production parameters gives only a partial picture of a vehicle's operation.
SUMMARY OF THE INVENTION
It is the general object of the invention to diagnose the cause of anomalies in the values of the state-of-health parameters of a vehicle.
It is a related object of the invention to employ the foregoing diagnosis to control the operation and use of the vehicle to reduce the severity and number of anomalies of the values of the state-of-health parameters of the vehicle, thereby extending the useful life of the vehicle while maintaining production goals.
It is also an important object of the invention to provide a historical record of the values of the condition and performance parameters of a vehicle, which can be used to schedule future maintenance and utilization of a vehicle.
It is yet another important object of the invention to provide to the user of a vehicle real-time information regarding the degree with which the vehicle is being utilized—i.e., the maximization of all performance and condition parameters within their normal ranges. It is a related object of the invention to signal the user of a vehicle whether the utilization of the vehicle at the moment is optimum and to also indicate whether the user has utilized the vehicle over a known time period (e.g., a work shift) in a manner that meets expectations.
These and other objects and advantages of the present invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
Briefly, the invention identifies a poor state of health of a vehicle and provides data regarding the recent use of the vehicle that can be used to effectively diagnose the cause of the poor health. Operating the vehicle beyond its normal operating conditions stresses components and subassemblies. If stressed to an extreme or for a long period of time, the component or subassembly may fail. On the other hand, under-utilization of the vehicle results in undue operating expenses and inefficient use of the vehicle. Therefore, the invention also provides a visual prompt to the operator of the vehicle on a substantially real-time basis an evaluation of the efficiency of the vehicle's operation with respect to a predetermined norm for an assigned task. With these two aspects of the invention, the operator of the vehicle is encouraged to operate the vehicle efficiently while at the same time being mindful that overstressing the vehicle to make up for a period of inefficiency will be recorded and noted by the operator's supervisors.
An electronic processor on-board the vehicle acquires vital sign data and work-related data at predetermined time intervals from sensors mounted to the vehicle for providing a set of vital sign data and a set of work data. The sensors that provide vital sign data sense parameters of the vehicle's subassemblies and components that are indicative of their state of health. The sensors that provide the work data sense parameters that are indicia of the task performed by the vehicle and of the amount of work the vehicle has done in performing the task. A memory is associated with the electronic processor and stores the vital sign and work data acquired by the processor in a format that allows the data to be retrieved from the memory in a manner that correlates the vital sign and work data. The processor includes a device for detecting a failure mode of the vehicle, where the failure mode is a value of one of the vehicle's state-of-health parameters that indicates a component or subassembly of the vehicle is in a poor state of health and failure of the component or subassembly is impending. In response to a detection of the failure mode, the processor provides indicia in the memory that identifies the time the failure occurred and the chronology of the values of the production-related data immediately preceding the time the failure mode occurred. In the illustrated embodiment, the indicia is data that identifies which one of the vital sign sensors has reached a critical condition and the value of the output signal from the vital sign sensor that caused detection of the failure mode.
When the failure mode detects a crash of the vehicle, it is particularly desirable to continue acquiring and storing production-related data during the entire crash event. In terms of the sensor readings, it is therefore desirable to provide indicia in the memory for the duration of the time period that the vehicle is moving after a crash event has been sensed.
In the illustrated embodiment, the indicia is provided by a memory that permanently stores an anomaly of a vital sign sensor with a chronology of the work-related sensors for a predetermined period of time immediately preceding the processors sensing the anomaly in the vital sign sensor. Other types of indicia can alternatively provide a record for later use in diagnosing anomalies in the operation of the vehicle.
In another aspect of the invention, a predetermined number of the most extreme va

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for tracking and recording vital signs and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for tracking and recording vital signs and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for tracking and recording vital signs and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3108299

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.