Collapsible container with integrally supported dunnage and...

Receptacles – Sectional – Folding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C206S583000, C220S023830, C220S530000, C220S001600

Reexamination Certificate

active

06540096

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to shipping containers used to ship products, and more specifically to collapsible containers which are returnable in an empty state for reuse.
BACKGROUND OF THE INVENTION
Returnable and reusable containers are utilized by manufacturers to ship a variety of different products to end users, such as assembly plants. For example, in the automobile industry, in particular, an assembly plant which is assembling a particular automobile or other vehicle utilizes parts from a number of different parts manufacturers or suppliers. These suppliers ship their respective parts to the assembly plant in reusable containers, and the parts are then removed from the containers and assembled together into a finished product, such as an automobile. The empty reusable containers are then returned to the parts suppliers for use in subsequent shipments of parts.
The return and reuse of empty containers results in a substantial cost savings for the supplier and or the end manufacturer or assembler, as may be appreciated, because reuse reduces the number of new containers which must be purchased. Furthermore, the returned containers alleviate the assembly plant's task of having to store, destroy, or otherwise dispose of the containers, thus resulting in further cost savings to the plant.
While returnable and reusable containers reduce costs by eliminating the need to constantly purchase new containers and reducing disposal costs, it may still be relatively costly to provide for their return shipment. The shipping charge rate for return shipment of the empty containers is based upon the volume of the container and upon the number of containers which might be situated in a return vehicle, such as a truck. With conventional containers used in the past, there has been a one-to-one (1:1) return-to-shipment ratio because an empty container occupies the same shipping space or volume as a full container.
Therefore, there is essentially not much of a shipping cost savings when returning an empty reusable container even though the empty container weighs less because it does not contain product.
Furthermore, the cost of storing conventional reusable containers may further reduce the other economic benefits they offer because empty containers also require the same warehouse or storage space as full containers. Container storage may be necessary at the plant before return shipment can be arranged. Similarly, the supplier will also store the containers on site to have them on hand and ready for shipment. Storage space is valuable and often limited, and it is usually desirable to utilize the space for something other than bulky, empty containers waiting to be shipped or returned. Therefore, the economic benefits provided by currently available reusable containers is reduced by the cost, both to the end user assembly plant and supplier, of return shipment and pre-return or post-return storage space requirements.
Some currently available reusable containers have addressed such problems by being collapsible into a smaller size or volume to thereby require less space when returned or stored. For example, some available reusable containers are collapsible into a volume essentially one-third (⅓) or one-fourth (¼) of their volume when shipped full of product. This provides a three-to-one (3:1) or four-to-one (4:1) return-to-shipment ratio, and thus, provides a substantial savings in return shipment costs. That is, a truck returning the containers to the originating site can carry three or four times the number of empty, collapsed containers as full containers. Additionally, collapsed, stored containers require substantially less storage space.
While such containers address the issue of return shipment and storage costs, they still have certain drawbacks. For example, for the containers to be collapsible, it is necessary to utilize separate dunnage elements, such as partitions or separating structures, in the container during shipment. Dunnage elements are used for separating and protecting the products shipped in the container. The separate dunnage elements must be handled accordingly apart from the container during shipment and return. That is, when the container has been assembled into an erected form for shipment and dunnage elements are to be utilized, the dunnage must be separately inserted and secured within the container. Subsequently, prior to return shipment, any dunnage elements utilized within the container must be detached and removed therefrom before the container can be collapsed into the smaller, returnable shape. As may be appreciated, the dunnage elements are then discarded or otherwise disposed of by the assembly plant adding to the plant's overall cost for the shipment. Furthermore, the supplier must construct or acquire new dunnage elements each time the returned container is reused for shipment and thus must incur the necessary costs associated therewith.
Additionally, the labor costs associated with constructing and installing dunnage elements in a container, and the additional labor for collapsing, removing and disposing of the dunnage elements after shipment, further increases the overall cost of shipping a product utilizing conventional containers. Therefore, even with existing collapsible, returnable containers, high shipping costs are incurred on both ends, i.e., by the supplier who constantly acquires new dunnage elements and by the assembly plant which constantly must dispose of the old dunnage elements or pay to have those dunnage elements returned with the container.
Access to the product in the containers is also a particular concern. Specifically, in the automotive industry, the containers full of product are positioned on an assembly line adjacent to a work area which is associated with a particular product to be installed on a manufactured vehicle. At a line position or station where interior door panels are installed onto a door, a container full of door panels is positioned at the station for access by the line worker. The product or part is taken directly from the container and is used on the line. However, some existing containers have been difficult to access when moving the parts therefrom to the installation. As will be appreciated, a line worker only has a certain amount of time to install a part. Any delay in accessing a part is undesirable. Furthermore, the repetitive motion of accessing parts to install on a vehicle should not be difficult or straining to the line worker since it must be done very many times during a shift. Some existing containers have not adequately addressed such concerns.
Some existing products have recognized some of the needs in the art discussed above and have provided returnable, collapsible containers with integral dunnage. For example, U.S. Pat. No. 5,725,119, which is co-owned with the present application, illustrates various containers and structures. While such products have provided many desirable benefits, such as reducing overall container and shipping costs, it is still desirable to improve on the current art.
Accordingly, it is an objective of the present invention to reduce the overall shipping costs normally associated with shipping product. It is another objective to reduce such shipping costs associated with both original shipment and return shipment.
It is further an objective of the present invention to provide a returnable and reusable container which adequately contains and protects product shipped therein and will occupy less space during return shipment than during original shipment.
It is another objective to assist the end user of the product within the container and to provide easy and ready access to the product.
It is further an objective of the present invention to reduce the supplier's time and labor costs associated with erecting a container and constructing and securing dunnage elements therein to protect the shipped product.
It is still another objective to reduce the supplier's replacement costs of dunnage elements for returne

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Collapsible container with integrally supported dunnage and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Collapsible container with integrally supported dunnage and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collapsible container with integrally supported dunnage and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3107135

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.