Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...
Reexamination Certificate
1999-08-24
2003-08-26
Niland, Patrick D. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From reactant having at least one -n=c=x group as well as...
C524S589000, C524S590000, C528S060000, C528S065000, C528S066000, C528S077000, C528S080000, C528S081000, C528S083000, C528S084000, C528S085000
Reexamination Certificate
active
06610811
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to polyurethanes with improved tear propagation resistance which contain dimer diol and/or trimer triol and/or a polyether containing dimer diol units and/or an OH-terminated polyester produced from polycarboxylic acids, preferably dimer fatty acid and/or trimer fatty acid, and diols.
PRIOR ART
Dimeric fatty alcohols (dimer diols) have been known for some time.
DE-A1 11 98 348, for example, describes their production by dimerization of unsaturated fatty alcohols with basic alkaline earth metal compounds at temperatures above 280° C.
They may also be obtained by hydrogenation of dimeric fatty acids and/or esters thereof in accordance with DE-B-17 68 313.
Another method of producing dimer diols comprises dimerizing unsaturated alcohols in the presence of silica/alumina catalysts and basic alkali metal compounds (cf. International patent application WO 91/13918).
A certain amount of trimerized fatty acid is always formed in the production of dimer fatty acid. This trimer fatty acid can be concentrated by removing the dimer fatty acid by distillation. After esterification with methanol for example, the esters of the trimer fatty acid—similarly to the esters of the dimer fatty acid—can be hydrogenated to trimer triol. This trimer triol, a trihydric alcohol containing 54 carbon atoms, may also be used in accordance with the present invention.
It is also known from unpublished German patent application P 43 16 245.2 that dimer diol can be condensed in the presence of an acid with elimination of water to form a polyether containing dimer diol units.
Polyurethanes containing dimer diol or trimer triol are also known.
The use of dimeric and trimeric fatty alcohols and mixtures thereof in the production of polyurethanes is known from DE-B1 11 79 660 which relates to the production of sulfur-containing elastic coating compositions.
It is also known that dimer diol can be used as a polyol for the production of polyurethane coatings by reaction with diisocyanates. Thus, DE-A1 12 25 795 describes polyurethane paints of dimeric and/or trimeric fatty alcohols containing an average number of 36 or 54 carbon atoms.
EP-B10 199 609 describes polyurethane adhesive layers produced from an NCO-terminated prepolymer based on polyester or polyether diols and dimer diol as chain-extending agent.
Polyurethane dispersions containing dimer diol and their use for stoving lacquers are described in DE-A1 42 37 965.
Unpublished German patent application P 43 08 100.2 describes casting resins of which the hydrolysis stability is improved by the addition of dimer diol.
The problem addressed by the present invention was to provide polyurethanes having improved tear propagation resistance.
It has surprisingly been found that polyurethanes containing dimer diol, trimer triol or dimer fatty acid or trimer fatty acid units show excellent tear propagation resistance.
DESCRIPTION OF THE INVENTION
The present invention relates to polyurethanes having improved tear propagation resistance which are produced from
A) a polyol component containing dimer diol and/or trimer triol and/or a polyether containing dimer diol units and/or an OH-terminated polyester produced from polycarboxylic acids, preferably dimer fatty acid and/or trimer fatty acid, and diols and
B) an isocyanate component containing prepolymers obtainable by reacting polyfunctional isocyanates with dimer diol and/or trimer triol and/or a polyether containing dimer diol units and/or an OH-terminated polyester produced from polycarboxylic acids, preferably dimer fatty acid and/or trimer fatty acid, and diols, at least one of components A or B containing dimer or trimer fatty acid or dimer or trimer fatty alcohol as a constituent.
The polyol component contains dimer diol and/or trimer triol and/or a polyether containing dimer diol units and/or an OH-terminated polyester produced from polycarboxylic acids, preferably dimer fatty acid and/or trimer fatty acid, and diols.
Irrespective of the processes described at the beginning for the production of the dimer diols, dimer diols produced from fatty acids or esters thereof or fatty alcohols containing 18 carbon atoms are preferably used. Dimer diols containing 36 carbon atoms are formed in this way. Dimer diols which have been produced by the industrial processes mentioned above always contain varying amounts of trimer triols and monohydric alcohols. In general, their percentage dimer diol content exceeds 70% by weight, the rest being trimer triols and monomer alcohols. Both these dimer diols and also purer dimer diols containing more than 90% by weight of dimer diol may be used in accordance with the present invention. Dimer diols containing more than 90 to 99% by weight of dimer diol are particularly preferred. Of these dimer diols, those with at least partly or completely hydrogenated double bonds are preferred.
Similarly to the esters of dimer fatty acid, the esters of trimer fatty acid may be hydrogenated to trimer triol. This trimer triol, a trihydric alcohol containing 54 carbon atoms, may also be used in accordance with the present invention. The trimer alcohol contains at least 50% by weight and preferably at least 65% by weight of trihydric alcohol.
The dimer diol or the trimer diol have hydroxyl values of 180 to 215 and preferably 200 to 210.
The polyethers containing dimer diol units may be produced in accordance with unpublished German patent application P 43 16 245.2 by acid-catalyzed polycondensation of suitable low molecular weight alkylene glycols at elevated temperature.
The polyethers containing dimer diol units have a hydroxyl value (OHV) of less than 175 and, more particularly, in the range from 10 to 100. The OH value expresses the quantity of KOH in mg which is equivalent to the quantity of acetic acid bound by 1 g of substance in the acetylation reaction.
The polyethers containing dimer diol units are liquid at room temperature (20° C.), i.e. they have a Brookfield viscosity at 25° C. of >3,000 mPas and, more particularly, in the range from 3,800 to 12,000 mPas.
The polyethers containing dimer diol units are hydrophobic, i.e. they are substantially insoluble in water at 20° C., preferably less than 1 mg and, more preferably, less than 0.1 mg dissolving in 100 ml of water.
Polyethers containing dimer diol units in the context of the invention also include the alkoxylation products of dimer diol or trimer triol which are obtainable by reaction of the hydroxyl groups of dimer diol or trimer triol with ethylene oxide, propylene oxide or butylene oxide. These polyethers may contain 1 to 20 and preferably 3 to 10 moles of alkylene oxide per mole of dimer diol or trimer triol.
Another embodiment is characterized by the use of OH-terminated polyesters obtained by esterification of polycarboxylic acids, preferably dimer or trimer fatty acid, with diols. Examples of suitable diols are ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, hexane-1,6-diol and butane-1,4-diol.
In the reaction of dicarboxylic acids, particularly dimer fatty acid, with diols, the equivalent ratio of OH to COOH is generally between 1.4:1 and 3:1 and preferably between 1.8:1 and 2.2:1. In the reaction of tricarboxylic acids, particularly trimer fatty acid, with diols, the equivalent ratio of OH to COOH is generally between 2.5:1 and 4:1 and preferably between 2.7:1 and 3.3:1.
50 to 100% by weight and preferably 70 to 90% by weight of the polyol component of the polyurethanes according to the invention consists of dimer diol and/or trimer triol and/or a polyether containing dimer diol units and/or an OH-terminated polyester produced from polycarboxylic acids, preferably dimer fatty acid and/or trimer fatty acid, and diols, the rest consisting of another polyol typically encountered in polyurethane chemistry.
These other polyols may be polyether, polyester or oleochemical polyols or mixtures of these compounds. An overview of polyethers and polyesters typically encountered in polyurethane chemistry can be found, for example, in Ullmanns Enzyklopädie der technische
Gruetzmacher Roland
Hoefer Rainer
Westfechtel Alfred
Drach John E.
Henkel Kommanditgesellschaft auf Aktien
Millson, Jr. Henry E.
Niland Patrick D.
LandOfFree
Polyurethanes with improved tear propagation resistance does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyurethanes with improved tear propagation resistance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyurethanes with improved tear propagation resistance will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3106279