Systems and methods for dental treatment planning

Dentistry – Orthodontics – Method of positioning or aligning teeth

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C433S213000

Reexamination Certificate

active

06602070

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to the field of orthodontics and, more particularly, to computer-automated development of an orthodontic treatment plan and appliance.
Repositioning teeth for aesthetic or other reasons is accomplished conventionally by wearing what are commonly referred to as “braces.” Braces comprise a variety of appliances such as brackets, archwires, ligatures, and O-rings. Attaching the appliances to a patient's teeth is a tedious and time-consuming enterprise requiring many meetings with the treating orthodontist. Consequently, conventional orthodontic treatment limits an orthodontist's patient capacity and makes orthodontic treatment quite expensive. As such, the use of conventional braces is a tedious and time consuming process and requires many visits to the orthodontist's office. Moreover, from the patient's perspective, the use of braces is unsightly, uncomfortable, presents a risk of infection, and makes brushing, flossing, and other dental hygiene procedures difficult.
2. Description of the Background Art
Tooth positioners for finishing orthodontic treatment are described by Kesling in the
Am. J Orthod. Oral. Surg.
31:297-304 (1945) and 32:285-293 (1946). The use of silicone positioners for the comprehensive orthodontic realignment of a patient's teeth is described in Warunek et al. (1989)
J. Clin. Orthod.
23:694-700. Clear plastic retainers for finishing and maintaining tooth positions are commercially available from Raintree Essix, Inc., New Orleans, La. 70125, and Tru-Tain Plastics, Rochester, Minn. 55902. The manufacture of orthodontic positioners is described in U.S. Pat. Nos. 5,186,623; 5,059,118; 5,055,039; 5,035,613; 4,856,991; 4,798,534; and 4,755,139.
Other publications describing the fabrication and use of dental positioners include Kleemann and Janssen (1996)
J Clin. Orthodon.
30:673-680; Cureton (1996)
J Clin. Orthodon.
30:390-395; Chiappone (1980)
J Clin. Orthodon.
14:121-133; Shilliday (1971)
Am. J Orthodontics
59:596-599; Wells (1970)
Am. J Orthodontics
58:351-366; and Cottingham (1969)
Am. J. Orthodontics
55:23-31.
Kuroda et al. (1996)
Am. J Orthodontics
110:365-369 describes a method for laser scanning a plaster dental cast to produce a digital image of the cast. See also U.S. Pat. No. 5,605,459.
U.S. Pat. Nos. 5,533,895; 5,474,448; 5,454,717; 5,447,432; 5,431,562; 5,395,238; 5,368,478; and 5,139,419, assigned to Ormco Corporation, describe methods for manipulating digital images of teeth for designing orthodontic appliances.
U.S. Pat. No. 5,011,405 describes a method for digitally imaging a tooth and determining optimum bracket positioning for orthodontic treatment. Laser scanning of a molded tooth to produce a three-dimensional model is described in U.S. Pat. No. 5,338,198. U.S. Pat. No. 5,452,219 describes a method for laser scanning a tooth model and milling a tooth mold. Digital computer manipulation of tooth contours is described in U.S. Pat. Nos. 5,607,305 and 5,587,912. Computerized digital imaging of the jaw is described in U.S. Pat. Nos. 5,342,202 and 5,340,309. Other patents of interest include U.S. Pat. Nos. 5,549,476; 5,382,164; 5,273,429; 4,936,862; 3,860,803; 3,660,900; 5,645,421; 5,055,039; 4,798,534; 4,856,991; 5,035,613; 5,059,118; 5,186,623; and 4,755,139.
BRIEF SUMMARY OF THE INVENTION
In one aspect, computer-implemented systems and methods implement a dental treatment plan by specifying tooth movement patterns using a two-dimensional array; and generating treatment paths to move the teeth in accordance with the specified pattern.
Implementations of the invention include one or more of the following. One dimension of the array identifies each stage in the teeth movement and one dimension of the array identifies a unique tooth. Tooth movement is specified by indicating a start stage and an end stage for a tooth. One or more tooth paths is determined based on the selected tooth movement pattern. The method includes selecting one or more clinical treatment prescriptions that include at least one of the following: space closure, reproximation, dental expansion, flaring, distalization, and lower incisor extraction. An appliance is fabricated for each treatment stage. The appliance can be either a removable appliance or a fixed appliance. The method also includes generating a three-dimensional model for the teeth for each treatment stage.
The system can conform to one or more constraints. The constraints relates to teeth crowding, teeth spacing, teeth extraction, teeth stripping, teeth rotation, and teeth movement. The teeth can be rotated approximately five and ten degrees (per stage) and can be incrementally moved in one or more stages (per stage), each stage moving each tooth approximately 0.2 mm to approximately 0.4 mm. The constraints can be stored in an array with one dimension of the array identifying each stage in the teeth movement. The treatment paths can include determining the minimum amount of transformation required to move each tooth from the initial position to the final position and creating each treatment path to require only the minimum amount of movement. Additionally, intermediate positions can be generated for at least one tooth between which the tooth undergoes translational movements of equal sizes. Further, intermediate positions can be generated for at least one tooth between which the tooth undergoes translational movements of unequal sizes. A set of rules can be applied to detect any collisions that will occur as the patient's teeth move along the treatment paths. Collisions can be detected by calculating distances between a first tooth and a second tooth by establishing a neutral projection plane between the first tooth and the second tooth, establishing a z-axis that is normal to the plane and that has a positive direction and a negative direction from each of a set of base points on the projection plane, computing a pair of signed distances comprising a first signed distance to the first tooth and a second signed distance to the second tooth, the signed distances being measured on a line through the base points and parallel to the z-axis, and determining that a collision occurs if any of the pair of signed distances indicates a collision. Where the positive direction for the first distance is opposite the positive direction for the second distance, a collision is detected if the sum of any pair of signed distances is less than or equal to zero. Information indicating whether the patient's teeth are following the treatment paths can be used to revise the treatment paths. More than one candidate treatment path for each tooth can be generated and graphically displayed for each candidate treatment path to a human user for selection. A set of rules can be applied to detect any collisions that will occur as the patient's teeth move along the treatment paths. Collisions can be detected by calculating distances between a first tooth and a second tooth by: establishing a neutral projection plane between the first tooth and the second tooth, establishing a z-axis that is normal to the plane and that has a positive direction and a negative direction from each of a set of base points on the projection plane, computing a pair of signed distances comprising a first signed distance to the first tooth and a second signed distance to the second tooth, the signed distances being measured on a line through the base points and parallel to the z-axis, and determining that a collision occurs if any of the pair of signed distances indicates a collision. A collision can also be detected if the sum of any pair of signed distances is less than or equal to zero. A set of rules can be applied to detect any improper bite occlusions that will occur as the patient's teeth move along the treatment paths. A value for a malocclusion index can be computed and the value displayed to a human user. The treatment paths can be generated by receiving data indicating restraints on movement of the patient's t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for dental treatment planning does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for dental treatment planning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for dental treatment planning will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096758

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.