Magnetic resonance imaging device

Electricity: measuring and testing – Particle precession resonance – Using a nuclear resonance spectrometer system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S307000

Reexamination Certificate

active

06611144

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a magnetic resonance imaging apparatus (MRI apparatus) for obtaining tomograms of desired portions of an object to be examined using nuclear magnetic resonance (NMR). In particular, it relate to an MRI apparatus capable of obtaining desired range of images of excellent quality in minimal time to enable visualization of movement in the vascular system.
BACKGROUND OF THE INVENTION
An MRI apparatus utilizes NMR to measure density distribution and relaxation time etc. of atomic nuclear spins (referred as spins hereinafter) in a desired portion of an object to be examined and displays images of desired slices of the object produced from the measured data. Conventional MRI apparatuses have a blood flow imaging function called MR angiography (MRA). This function includes a method using a contrast agent and a method using no contrast agent.
In a common method using a contrast agent, a gradient echo type sequence of short TR (repetition time) is used in combination with a T1-shortening type contrast agent such as Gd-DTPA. The method utilizes the fact that blood spins containing T1 shortening contrast agent are not likely to be saturated by the repeated excitation of a short TR because the blood spins have a shorter T1 than those of surrounding tissues and generate high-strength signals relative to the surrounding tissues, and enables to visualize blood vessels filled with blood containing a contrast agent with high contrast relative to the other tissues. Measurement of volume data including blood vessels, typically three-dimensional measurement, is conducted while the contrast agent remains in the blood of interest and the obtained three-dimensional images are combined and subjected to projection process to depict blood flow. In order to obtain information of wide range and high resolution, sequence based on the three-dimensional gradient echo method for obtaining three-dimensional data is generally employed.
In order to produce good images in such a three-dimensional contrast MRA, the following factors are important. (1) A manner of injecting a contrast agent, and (2) Measurement time or timing. With regard to (1), the contrast agent should be injected such that its high concentration is maintained in a blood vessel of interest in a stable manner. For this purpose, a rapid injection method using an automatic injection machine is generally utilized.
With regard to (2), if arteries are selectively imaged, for example, the imaging timing is determined such that the concentration of the contrast agent becomes high when data are acquired. Ideally, the concentration of the contrast agent reaches its peak value when a central part (low frequency region) of the k-space which controls the image contrast is sampled. The timing is determined corresponding to date-acquisition ordering of an employed pulse sequence.
Conventional data-acquisition ordering includes a sequential ordering in which data are acquired from one high-frequency side of k-space toward the other high-frequency side via a low-frequency region, and a centric ordering in which data are acquired from low-frequency region of the k-space toward both high-frequency sides alternately. Generally, the centric ordering is employed. In a centric ordering in a three-dimensional measurement, one of a phase encoding loop and a slice encoding loop is set to be an outer loop and the other to be an inner loop, and either or both is controlled by a centric ordering.
However, as shown in FIG.
1
(
b
), the centric ordering in this case is not a centric ordering in a true sense because a distance between the k-space origin and a sampling point fluctuates, and therefore likely to be influenced by movement of an examined object and makes separation of arteries and veins insufficient.
For solving this problem, an elliptical centric ordering is proposed, in which sampling order is controlled in view of the relative FOV (Field of View) such that the distance from the ky-kz space origin to a sampling point increases as the measurement proceeds (FIG.
1
(
c
)) (“Performance of an Elliptical Centric View Order for Signal Enhancement and Motion Artifact Suppression in Breath-hold Three-Dimensional Gradient Echo Imaging. Alan, et al. Magnetic Resonance in Medicine 38:793-802,1997”)
This data-acquisition method enables to produce arterial images selectively by starting measurement at the time when the concentration of a contrast agent in the blood vessel of interest increases since low-frequency region data that dominates the image contrast are measured at the beginning of the measurement time.
Although the above-mentioned centric ordering and elliptical centric ordering enable to determine the image contrast in the early stage of measurement and are efficient for obtaining arterial images, if the optimal measuring moment is missed, the low-frequency information is acquired during the concentration of a contrast agent is low and thereby image quality becomes degraded. Especially, if the measuring time is too early, the low-frequency data is sampled in the time period when signals of a blood vessel are extremely low and the high-frequency region data is sampled in the time period when the signals of the blood vessel are high. This causes rinsing artifacts having no direct current component. In addition, the measurement time is prolonged because overall measurement is performed from the origin as a center toward the high-frequency region of the k-space horizontally or vertically.
On the other hand, the sequential ordering enables to produce stable images in which remarkable artifact is not likely to generate even if the measurement timing is somewhat wrong. However, this ordering is susceptible to movement of an examined object similarly to the aforementioned centric ordering and separation of artery and veins becomes insufficient.
Accordingly, an object of the present invention is to provide an MRI apparatus capable of visualizing a whole of a blood vessel of interest with high contrast in minimal time while reducing the influence of time shift (error) from an optimal measurement time. Another object of the present invention is to provide an MRI apparatus which is insusceptible to the influence of movement of an examined object and capable of visualizing arteries and veins separately. Yet another object of the present invention is to provide a data-acquisition method suitable for MRA.
DISCLOSURE OF THE INVENTION
In order to achieve the above-mentioned objects, an MRI apparatus of the present invention employs a data-acquisition method in which sampling points of k-space are divided into two groups and, in the first group which is measured first, sampling order is controlled from the high-frequency region toward the low-frequency region such that the distance from the k-space origin to a sampling point progressively decreases and, in the second group, sampling order is controlled in an opposite manner from the low-frequency region toward the high-frequency region such that the distance from the k-space origin to a sampling point progressively increases.
Specifically, an MRI apparatus of the present invention comprises static magnetic field generating means for generating a static magnetic field in a space where an object to be examined is placed, gradient magnetic field generating means for applying gradient magnetic fields in the slice direction, phase encoding direction and readout direction, transmitting means for applying high-frequency magnetic field to cause nuclear magnetic resonance in atomic nuclei of a living tissue of the object, receiving means for detecting echo signals emitted by the nuclear magnetic resonance, control means for controlling the magnetic field generating means, transmitting means and receiving means, signal processing means for performing image reconstruction operation using the echo signals detected by the receiving means, display means for displaying the produced image, wherein the control means performs a three-dimensional sequence including a slice encoding step and a p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic resonance imaging device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic resonance imaging device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic resonance imaging device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3091328

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.