High mixture-quality bi-modal polyethylene blends

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S240000

Reexamination Certificate

active

06545093

ABSTRACT:

The present invention relates to bimodal polyethylene blends made from a high-molecular-weight ethylene copolymer and a low-molecular-weight ethylene homo- or copolymer and having a melt flow rate MFR 190/21.6 of from 6 to 14 g/10 min, a density of from 0.94 to 0.97 g/cm
3
, an environmental-stress-cracking resistance ESCR>150 h and a value of less than 3 when the quality of blending in the blend is measured to ISO 13949. It further relates to a process for preparing polyethylene blends of this type by melting and homogenization in a mixing apparatus and discharge via a gear pump, and also to the use of these for producing moldings, in particular hollow articles and pressure pipes.
Higher requirements are constantly being placed upon the mechanical load-bearing capability of polyethylene moldings. In particular, there is a requirement for highly environmental-stress-cracking-resistant, impact-resistant and rigid products, which are particularly suitable for the production of hollow articles, and also of pressure pipes. The requirement for simultaneous good environmental-stress-cracking resistance and stiffness is not easy to meet, since these are contradictory properties. While stiffness increases with the density of the polyethylene, environmental-stress-cracking resistance decreases as density increases.
For hollow articles and pressure pipes it has therefore proven advantageous to use blends made from a high-molecular-weight, low-density ethylene copolymer and a low-molecular-weight, high-density ethylene homopolymer, described, for example, by L. L. Böhm et al., Adv. Mater. 4, (1992), 234-238. Similar polyethylene blends are disclosed in EP-A 100 843, EP-A 533 154, EP-A 533 155, EP-A 533 156, EP-A 533 160 and U.S. Pat. No. 5,350,807.
However, the properties of bimodal polyethylene blends are not solely dependent on the properties of the components. Particularly for the mechanical properties of the blends, a decisive role is played by the quality of blending of the high-with the low-molecular-weight compound, and also with any other additives present, such as color pigments or processing aids. Poor quality of blending causes, inter alia, low environmental-stress-cracking resistance, and impairs the creep performance of pressure pipes made from polyethylene blends.
The quality of blending in polymer blends can be checked by examining thin sections (microtome sections) of a specimen using an optical microscope. Inhomogeneity is visible here as specks or white spots. The specks or white spots are predominantly high-molecular-weight, high-viscosity particles in a low-viscosity matrix (see, for example, U. Burkhardt et al. in “Aufbereiten von Polymeren mit neuartigen Eigenschaften”, VDI-Verlag, Düsseldorf 1995, p. 71). The size of inclusions of this type may be up to 300 &mgr;m. They can cause environmental stress cracking and brittle failure of components. As the quality of blending in a blend improves, the number of these inclusions observed falls and their size reduces. In quantitative terms the quality of blending in a blend is determined to ISO 13949. The test specification requires a microtome section to be prepared from a specimen of the blend and the number and size of these inclusions to be counted, and an evaluation system is given for grading the quality of blending in the blend.
An important application for bimodal polyethylene blends is the production of pressure pipes for conveying gas, drinking water and waste water. Pressure pipes made from polyethylene are increasingly replacing metal pipes. An important factor in applications of this type is very long service life of the pipe, without fear of aging or brittle failure. Even small defects or indentations in a pressure pipe can grow, even at low pressures, and cause brittle failure. This process can be accelerated by temperature increase and/or aggressive chemicals. It is therefore extremely important to reduce, as far as is at all possible, the number and size of defects, such as specks or white spots, in a pipe.
For conveying drinking water a further important factor is that the blend has very low odor and is very taste-neutral.
To prepare bimodal polyethylene blends use is made of reactor cascades, i.e. two or more polymerization reactors arranged in series. The low-molecular-weight component is polymerized in one reactor and the high-molecular-weight component in the next (see, for example, M. Rätzsch, W. Nei&bgr;l “Bimodale Polymerwerkstoffe auf der Basis von PP und PE” in “Aufbereiten von Polymeren mit neuartigen Eigenschaften” pp. 3-25, VDI-Verlag, Düsseldorf 1995). Mixing of the polyethylenes of different molar mass distribution and chemical composition has already taken place here within the polymer granules. However, a disadvantage of this process is that the same catalyst has to be used in each reactor of the cascade. High equipment costs are necessary to ensure that comonomers added in one reactor or hydrogen added as regulator do not pass into the next reactor. In addition, it is difficult to adjust the polymerization rate of each reactor to give the desired composition of the blend.
The most familiar process for preparing polymer blends in general is the intimate mixing of individual components, for example by melt extrusion in an extruder or kneader (see, for example, “polymer Blends” in Ullmann's Encyclopedia of Industrial Chemistry, 6
th
Edition, 1998, Electronic Release). An advantage of this method over the reactor cascade for preparing bimodal polyethylene blends of the type described is that its flexibility is greater, and the components of the blend may therefore also have been derived from a variety of processes. However, in other respects there are particular difficulties with this method. The melt viscosities of the high- and of the low-molecular-weight component of a bimodal polyethylene blend are extremely different. Whereas at the usual temperatures for preparing the blends, from about 190 to 210° C., the low-molecular-weight component has already almost become a low-viscosity liquid, the high-molecular-weight component is only softened (“lentil soup”). It is therefore very difficult to mix the two components homogeneously. In addition, it is known that the high-molecular-weight component can easily be degraded by thermal stress or by shear forces in the extruder, impairing the properties of the blend. To avoid this the use of gear pumps to aid discharge has been proposed (see, for example, W. Gerber in “Optimierung des Compoundierprozesses durch Rezeptur- und Verfahrensverständnis” VDI-Verlag, Düsseldorf, 1997, pp. 253-280).
It is an object of the present invention to provide a bimodal polyethylene blend with improved quality of blending and suitable for producing pressure pipes. Another object of the invention was to provide a cost-effective and flexible process for preparation of a blend of this type under mild conditions from a high-molecular-weight and a low-molecular-weight component.
We have found that this object is achieved by means of bimodal polyethylene blends made from a high-molecular-weight ethylene copolymer and a low-molecular-weight ethylene homo- or copolymer and having a melt flow rate MFR 190/21.6 of from 6 to 14 g/10 min, a density of from 0.94 to 0.97 g/cm
3
, an environmental-stress-cracking resistance ESCR>150 h and a value of less than 3 when the quality of blending in the blend is measured to ISO 13949. A process for preparing polyethylene blends of this type by melting and homogenization in a mixing apparatus and discharge via a gear pump has also been found, as has the use of the blends for hollow articles and pressure pipes.
The density of the novel bimodal polyethylene blend is from 0.94 to 0.97 g/cm
3
, preferably from 0.95 to 0.97 g/cm
3
and very particularly preferably from 0.95 to 0.96 g/cm
3
. The melt flow rate MFR 190/21.6 is from 6-14 g/10 min. If the melt flow rate is greater than 14 g/10 min the environmental-stress-cracking resistance is no longer adequate for pressure pipes, and if the melt flow rate is less than 6 it is very diff

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High mixture-quality bi-modal polyethylene blends does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High mixture-quality bi-modal polyethylene blends, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High mixture-quality bi-modal polyethylene blends will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090620

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.