Monophase solid solutions comprising a plurality of color...

Record receiver having plural interactive leaves or a colorless – Having a colorless color-former – developer therefor – or... – Identified color-former

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S031160, C106S031200, C106S031210, C106S031220, C503S220000, C503S221000, C549S224000

Reexamination Certificate

active

06566302

ABSTRACT:

TECHNICAL FIELD
The present invention relates to monophase solid solutions which are useful as colour forming compounds in recording materials. More particularly, the invention relates to a monophase solid solution comprising a plurality of colour former compounds, processes for their preparation and to the use of monophase solid solutions as colour formers in recording materials such as heat sensitive and pressure sensitive recording materials.
DESCRIPTION OF THE PRIOR ART
Pressure sensitive recording, heat sensitive recording and electroheat sensitive recording have conventionally been used as systems for recording transferred information through the mediation of external energy, such as pressure, heat or electricity, by utilising a colour reaction between a colourless or pale coloured electron donative compound (colour forming compound) and an organic or inorganic electron acceptor (developer).
In such recording systems, mixtures of more than one colour former have been used as the colour forming compound. For example, U.S. Pat. No. 4,226,912 discloses a system wherein the chromogenic material is a physical mixture of two black fluoran colour formers in a heat sensitive recording system. There is, however, no mention in U.S. Pat. No. 4,226,912 of solid solutions of colour formers.
The properties which are most desirable in a colour forming material, in addition to the effective development of colour are: light fastness of the developed colour, heat fastness of the developed colour and moisture resistance. Typically, colour development in heat sensitive and electroheat sensitive recording materials has been provided by the action of a single colour former. However, the use of more than one colour former allows greater control over the shade produced and shows improved image resistance. Thus it would be desirable to develop a colour forming system comprising more than one colour forming material which demonstrated good light heat and moisture resistance.
OBJECTS OF THE INVENTION
An object of the present invention is to overcome the undesirable properties of single colour former compounds and mixtures of colour former compounds as the colour forming agent of the recording materials. Thus the present invention provides novel monophase solid solutions comprising a plurality of colour former compounds, having excellent properties for use in the pressure sensitive and heat sensitive recording material, particularly in the heat sensitive recording materials. It is a further object of this invention to provide processes for the manufacture of the novel monophase solid solutions.
DETAILED DESCRIPTION OF THE INVENTION
The monophase solid solutions of the invention are composed of a plurality of colour former compounds. The colour former compounds of the invention may be any known colour forming compounds such as fluoran type, phthalide type, phenoxazine type, phenothiazine type, rhodamine lactam type, leuco-auramine type, triphenylmethane type, spiropyran type, benzoxazine type, quinazoline type and the like. Amongst these, fluoran and phthalide type are preferable due to the ease of formation of solid solutions and superior properties in application.
As hereinbefore detailed the present invention relates to novel monophase solid solutions, processes for their manufacture and their uses in pressure sensitive and heat sensitive recording systems.
In the literature, the definitions by the various authors, such as, G. H. Van't Hoff, A. I. Kitaigorodsky and A. Whitacker for solid solutions and mixed crystals are often contradictory, (cf, e.g. ‘Analytical Chemistry of Synthetic Dyes’, Chapter 10/page 269, Editor K. Venkataraman, J. Wiley, New York, 1977).
The term ‘monophase solid solution’ or ‘multiphase solid solution’ or mixed crystal’, as defined herein, therefore, should be taken from the following definitions, which have been adapted to the current improved state of knowledge of such systems:
A monophase (or single-phase or guest-host) solid solution possesses a crystal lattice which is identical with the crystal lattice of one of its components. One component is embedded as the ‘guest’ in the crystal lattice of the other component, which acts as the ‘host’. The X-ray diffraction pattern of such a monophase solid solution is substantially identical to that of one of the components, called the ‘host’. Within certain limits, different proportions of the components produce almost identical results.
A multiphase solid solution possesses no precise, uniform crystal lattice. It differs from a physical mixture of its components in that the crystal lattice of at least one of its components is partially or competely altered. In comparison to a physical mixture of the components, which gives an X-ray diffraction diagram that is additive of the diagrams seen for the individual components. The signals in the X-ray diffraction diagram of a multiphase solid solution are broadened, shifted or altered in intensity. In general, different proportions of the components produce different results.
A mixed crystal (or solid compound type) solid solution possesses a precise composition and a uniform crystal lattice, which is different from the crystal lattices of all its components. If different proportions of the components lead, within certain limits, to the same result, then a solid solution is present in which the mixed crystal acts as a host.
For the avoidance of doubt it may also be pointed out that, inter alia, there may also be amorphous structures and mixed aggregates consisting of different particles of different physical type, such as, for example, an aggregate of different components each in pure crystal modification. Such amorphous structures and mixed aggregates cannot be equated with either solid solutions or mixed crystals, and possess different fundamental properties.
As hereinbefore detailed, the novel monophase solid solutions comprise a plurality of colour compounds. Suitable colour forming materials which may be included in the solid solutions according to the present invention, include but are not limited to; 3-dibutylamino-7-dibenzylaminofluoran, 3-diethylamino-6-methylfluoran, 3-dimethylamino-6-methyl-7-anilinofluoran, 3-diethylamino-6-methyl-7-anilinofluoran, 3-diethylamino-6-methyl-7-(2,4-dimethylanilino)fluoran, 3-diethylamino-6-methyl-7-chlorofluoran, 3-diethylamino-6-methyl-7-(3-trifluoromethylanilino)fluoran, 3-diethylamino-6-methyl-7-(2-chloroanilino)fluoran, 3-diethylamino-6-methyl-7-(4-chloroanilino)fluoran, 3-diethylamino-6-methyl-7-(2-fluoroanilino)fluoran, 3-diethylamino-6-methyl-7-(4n-octylanilino)fluoran, 3-diethylamino7-(4-n-octylanilino)fluoran, 3-diethylamino-7-(4-n-octylamino)fluoran, 3-diethylamino-6-methyl-7-(dibenzylamino)fluoran, 3-diethylamino-7-(dibenzylamino)fluoran, 3-diethylamino-6-chloro-7-methylfluoran, 3-diethylamino-7-t-butylfluoran, 3-diethylamino-7-carboxyethylfluoran, 3-diethylamino-6-chloro-7-anilinofluoran, 3-diethylamino-6-methyl-7-(3-methylanilino)fluoran, 3-diethylamino-6-methyl-7-(4-methylanilino)fluoran, 3-diethylamino-6-ethoxyethyl-7-anilinofluoran, 3-diethylamino-7-methylfluoran, 3-diethylamino-7-chlorofluoran, 3-diethylamino-7-(3-trifluoromethylanilino)fluoran, 3-diethylamino-7-(2-chloroanilino)fluoran, 3-diethylamino-7-(2-fluoroanilino)fluoran, 3-diethylamino-benzo[a]fluoran, 3-diethylamino-benzo[c]fluoran, 3-dibutylamino-6-methyl fluoran, 3-dibutylamino-6-methyl-7-anilinofluoran, 3-dibutylamino-6-methyl-7-(2,4-dimethylanilino)fluoran, 3-dibutylamino-6-methyl-7-(2-chloroanilino)fluoran, 3-dibutylamino-6-methyl-7-(4-chloroanilino)fluoran, 3-dibutylamino-6-methyl-7-(2-fluoroanilino)fluoran, 3-dibutylamino-6-methyl-7-(3-trifluoromethylanilino)fluoran, 3-dibutylamino-6ethoxyethyl-7-anilinofluoran, 3-dibutylamino-6-chloro-anilinofluoran, 3-dibutylamino-6-methyl-7-(4-methylanilino)fluoran, 3-dibutylamino-7-(2chloroanilino)fluoran, 3-dibutylamino-7-(2-fluoroanilino)fluoran, 3-dipentylamino-6-methyl-7-anilinofluoran, 3-dipentylamino-6-methyl-7-(4-2-chloroanilino)fluoran, 3-dipentylamino-7-(3-trifluoromethylanilino)fluora

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monophase solid solutions comprising a plurality of color... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monophase solid solutions comprising a plurality of color..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monophase solid solutions comprising a plurality of color... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090497

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.