Method and apparatus for time synchronized measurement...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S198000, C162S263000, C073S159000

Reexamination Certificate

active

06567720

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to process control lines such as paper manufacturing equipment and is particularly directed to paper machines of the type which transport webs of paper fibers that are being formed into rolls of finished paper. The invention is specifically disclosed as a method for real time correction of measurements of process variables which, without correction, are manifested as cross direction and machine direction variability in the paper web due to rotating or periodic equipment by use of a time synchronized measurement correction technique.
BACKGROUND OF THE INVENTION
Computerized monitoring systems have been used to monitor the properties of a moving web of material such as that produced in paper mills. In such systems, the process variables that are monitored relate to the “machine direction” (MD) or the “cross direction” (CD), and some process variables are related to physical parameters that are affected in both directions.
One of the problems in the current state of control technology is the limited ability to separate true cross direction variability (which is positionally dependent) from both machine direction variability (which is time dependent) that occurs uniformly across an entire moving web of material, and the effects of rotating equipment which produce machine direction variability that is positionally dependent. One current solution to this limitation is the use of filtering, however, this slows the speed of response of CD control, and sometimes cannot adequately resolve the true profile shape of the web.
The above filtering solution that is currently in use has a limitation because the filtering slows the speed of response of the CD control system. Moreover, the filtered results are not always able to adequately resolve the true profile shape. This is caused by inadequate sampling of the impact of the rotating or periodic equipment, and in certain cases the existence of a synchronization pattern between this equipment and the scanning measurement. A near exact synchronization produces an effect that can be referred to as an “aliased profile,” in which the alias forms a false profile that is due to sampling the equipment repeatedly at the same position in its periodic cycle.
A breakthrough occurred with the ability to acquire on-line measurements and generate a time-synchronous array map of the moving web while in production, and this array or map can be used to assess the impact of the periodicity of the machine elements. This invention is disclosed in U.S. Pat. No. 5,960,374, titled “System for Time Synchronous Monitoring of Product Quality Variable,” issued to Lausier on Feb. 14, 1997. The Lausier system builds count maps and measurement maps from a predetermined number of rotating elements. A scanning measurement frame is mounted across the width of the moving product web and takes on-line measurements of a selected variable in the cross direction and machine direction of the web. Event trigger signals from the sensors are coupled to elements of the process line, and the CD and MD measurements from the scanning sensors in a particular measurement frame are provided to the computer system. Data measurement “boxes” are used to receive the scanned measurements of paper quality variables (in the case of a paper mill) over the surface of the web, in which there are spatial CD zone increments and MD position/slash time increments that define the data measurement boxes. Given a sufficient amount of time and samples taken, the effect of all mapped rotating elements can be determined.
An example of the synchronization pattern referred to above is illustrated in
FIG. 5
, which depicts the count matrix comprising the number of scanned measurements that occurred when the coating rod was at each rotational position and the scanner was at each cross directional position. With perfect sampling, one would expect the same number of counts in each measurement cell. However, as can be seen on
FIG. 5
, some of the measurement cells are not sampled at all, while others were sampled over 180 times during the time interval during which samples were taken. Consequently, the value of the measurement cells in the heavily sampled regions will dominate the calculated values, and will falsely bias the profile estimation. This sampling error is not random, but appears in diagonal or cross-hatched patterns. In one process equipment installation, the cross-hatched pattern was produced by an almost exact 10:1 ratio between the scanner pattern and rod rotation period.
SUMMARY OF THE INVENTION
Accordingly, it is a primary advantage of the present invention to correct the measurement profile of a processing line of periodically-moveable equipment, such as rotating equipment, with little or no filtering. It is another advantage of the present invention to remove aliasing effects in substantially real time while measurements are being collected for a process line utilizing rotating equipment, such as used in a paper mill. It is a further advantage of the present invention to create accurate profiles of rotating equipment process lines that can be used for cross machine control with little or no filtering to provide immediate correction for rotational effects at the time of sampling and before the data is averaged or used in other ways, thereby allowing the control system to more quickly compensate for process line product changeovers or other variations in system components.
Additional advantages and other novel features of the invention will be set forth in part in the description that follows and in part will become apparent to those skilled in the art upon examination of the following or may be learned with the practice of the invention.
To achieve the foregoing and other advantages, and in accordance with one aspect of the present invention, an improved computerized process control system is provided that includes a process equipment line having at least one moving element that moves with a time periodicity that may vary for successive cycles of movement, which is used to produce a material which, for at least one stage of production, forms a moving web of material that is proximal to one or more of the moving element(s); a memory circuit for storing information, at least one input device that measures at least one process parameter of the moving web of material and associates that measurement with its multidimensional position on the web, and a processing circuit that controls a flow of information between the memory circuit and the input device(s); a sensor to determine the position of the periodic element; the processing circuit is configured to receive data from the input device(s) by measuring and numerically quantifying the at least one process parameter during multiple cycles of movement of the at least one moving element(s) and store the numerically quantified information in the memory circuit, then to build at least one Correction Map containing the numerically quantified information acquired over a predetermined time interval and to store the Correction Map in the memory circuit; and the processing circuit is further configured to, during a manufacturing operation, (i) again measure and numerically quantify the process parameter in substantially real time, (ii) determine positions of the moving element(s), (iii) apply the Correction Map(s) to the process parameter that is measured in substantially real time to generate at least one decoupled sample of the process parameter and store the decoupled sample(s) in the memory circuit; (iv) and utilize the decoupled sample(s) of the process parameter to operate the process equipment line, thereby providing a substantially real time measurement correction of product quality variability in the process equipment line.
In accordance with another aspect of the present invention, a method for substantially real time measurement correction of product quality variability in a process equipment line is provided, in which the method comprises: providing a process equipment line having at least one

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for time synchronized measurement... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for time synchronized measurement..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for time synchronized measurement... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.