Process for curing a polymerizable composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C522S064000, C522S114000, C522S116000, C522S120000, C522S121000, C522S122000, C522S135000, C522S136000, C522S137000, C522S138000, C522S139000, C522S140000, C522S141000, C522S142000, C522S143000, C522S144000

Reexamination Certificate

active

06620857

ABSTRACT:

The invention relates to a process for the curing of surface coatings, whereby the surface hardness of the cured surface coating is increased by means of irradiation with UV light, and to a polymerisable composition.
In U.S. Pat. No. 4,121,965 the resistance of thermoplastic polyurethane surfaces to solvents and abrasion is improved by treatment of the surface with a mixture of solvent and photoinitiator and by subsequent irradiation with UV light. Derwent No. 94-252879/31 (JP-A Hei 6 184267) describes a polyurethane resin obtained by reacting polyol mixtures, containing chlorinated polyols and polyols having COOH groups, with polyisocyanates and unsaturated monohydroxy compounds and, where appropriate, a photoinitiator. DE-A 42 37 659 claims surface-coating compositions that contain functionalised resins having &agr;,&bgr;-unsaturated groups and that are cured thermally. Derwent No. 87-331357 (JP-A Sho 62 236867) describes a curing process combining thermal and photochemical curing. Derwent No. 85-188037 (JP-A Sho 60 118271) discloses a combined heat- and UV-curable composition. EP-A 600 262 claims photoresist compositions having heat- and UV-curable components. In DE-A 33 32 004 and EP-A 247 563 there are prepared UV-curable surface-coating systems that comprise epoxide/amine- or polyol/isocyanate-based resins.
In the art there is a need for resins for coatings and surface coatings that exhibit good properties especially in respect of the durability of the cured surface.
It has now been found, surprisingly, that coatings having very good surface properties can be obtained by means of a process for the curing of a polymerisable composition comprising
(A) a coating system based on
(I) a polyacrylate polyol and/or polyester polyol with melamine or
(II) a polyacrylate polyol and/or polyester polyol with a blocked or unblocked polyisocyanate or
(III) a carboxyl-, anhydride- or amino-functional polyester and/or polyacrylate with an epoxy-functional polyester or polyacrylate, or
(IV) a mixture of (I), (II), (III) and/or (IV),
(B) an OH—, NH
2
—, COOH—, epoxy- or NCO-functional resin containing, in addition, at least one ethylenically unsaturated double bond, it being necessary for a spacer group of at least 4 linearly linked atoms to be present between the double bond and the functional group,
wherein components (A) and (B) do not contain halogen, and
(C) at least one photoinitiator,
by thermal treatment and, for the purpose of improving the surface properties, subsequent photochemical treatment with light of a wavelength from 200 to 600 nm.
The invention relates also to a composition comprising
(A) a coating system based on
(I) a polyacrylate polyol and/or polyester polyol with melamine or
(II) a polyacrylate polyol and/or polyester polyol with a blocked or unblocked polyisocyanate or
(III) a carboxyl-, anhydride- or amino-functional polyester and/or polyacrylate with an epoxy-functional polyester or polyacrylate, or
(IV) a mixture of (I), (II), (III) and/or (IV),
(B) an OH—, NH
2
—, COOH—, epoxy- or NCO-functional resin containing, in addition, at least one ethylenically unsaturated double bond, it being necessary for a spacer group of at least 4 linearly linked atoms to be present between the double bond and the functional group,
wherein components (A) and (B) do not contain halogen, and
(C) at least one photoinitiator.
Constituents of component (A) are, for example, surface-coating or coating-system constituents that are customary in the art. In the context of the present invention, component (A) represents a surface coating or a coating.
Constituents of component (A) are, for example, polymers that are derived from &agr;,&bgr;-unsaturated acids or from derivatives thereof. Examples thereof are polyacrylates and polymethacrylates, polymethylmethacrylates impact-resistant modified with butyl acrylate, polyacrylamides and polyacrylonitriles. Also of interest are, for example, silicone acrylates. Further constituents of component (A) may be polyurethanes that are derived on the one hand from polyethers, polyesters and polyacrylates having free hydroxy groups and on the other hand from aliphatic or aromatic polyisocyanates, and precursors thereof. The constituents of component (A) also include, for example, cross-linkable acrylic resins that are derived from substituted acrylic acid esters, for example epoxy acrylates, urethane acrylates or polyester acrylates. Furthermore, alkyl resins, polyester resins and acrylate resins, and modifications thereof, that are cross-linked with melamine resins, urea resins, isocyanates, isocyanurates, polyisocyanates, polyisocyanurates or epoxy resins may be a constituent of component (A).
Component (A) is, for example, generally a film-forming binder based on a thermoplastic or thermocurable resin, predominantly on a thermocurable resin. Examples thereof are alkyd, acrylic, polyester, phenol, melamine, epoxy and polyurethane resins and mixtures thereof. Examples thereof are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A18, pp. 368-426, VCH, Weinheim 1991.
Component (A) may be a cold-curable or hot-curable binder, with the addition of a curing catalyst possibly being advantageous. Suitable catalysts that accelerate the full cure of the binder are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A18, p. 469, VCH Verlagsgesellschaft, Weinheim 1991.
Examples of coatings (A) with specific binders are:
1. surface coatings based on cold- or hot-cross-linkable alkyd, acrylate, polyester, epoxy or melamine resins or mixtures of such resins, where appropriate with the addition of a curing catalyst;
2. two-component polyurethane surface coatings based on hydroxy-group-containing acrylate, polyester or polyether resins and aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
3. one-component polyurethane surface coatings based on blocked isocyanates, isocyanurates or polyisocyanates that are de-blocked during stoving; if desired, the addition of melamine resins is also possible;
4. one-component polyurethane surface coatings based on aliphatic or aromatic urethanes or polyurethanes and hydroxy-group-containing acrylate, polyester or polyether resins;
5. one-component polyurethane surface coatings based on aliphatic or aromatic urethane acrylates or polyurethane acrylates having free amine groups in the urethane structure and melamine resins or polyether resins, where appropriate with the addition of a curing catalyst;
6. two-component surface coatings based on (poly)ketimines and aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
7. two-component surface coatings based on (poly)ketimines and an unsaturated acrylate resin or a polyacetoacetate resin or a methacrylamidoglycolate methyl ester;
8. two-component surface coatings based on carboxyl-group- or amino-group-containing polyacrylates and polyepoxides;
9. two-component surface coatings based on anhydride-group-containing acrylate resins and a polyhydroxy or polyamino component;
10. two-component surface coatings based on acrylate-containing anhydrides and polyepoxides;
11. two-component surface coatings based on (poly)oxazolines and anhydride-group-containing acrylate resins or unsaturated acrylate resins or aliphatic or aromatic isocyanates, isocyanurates or polyisocyanates;
12. two-component surface coatings based on unsaturated polyacrylates and polymalonates;
13. thermoplastic polyacrylate surface coatings based on thermoplastic acrylate resins or extrinsically cross-linking acrylate resins in combination with etherified melamine resins;
14. surface-coating systems based on siloxane-modified acrylate resins.
Blocked isocyanates as may be used in component (A) are described, for example, in Organischer Metallschutz: Entwicklung und Anwendung von Beschichtungsstoffen, pp. 159-160, Vincentz Verlag, Hannover (1993). Such compounds are those wherein the highly reactive NCO group is “blocked” by reaction with specific radicals, for example, primary alcohols, phenol, ethyl acetoacetate, &egr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for curing a polymerizable composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for curing a polymerizable composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for curing a polymerizable composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.