Method of and material for purification of physical liquids...

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Composite having voids in a component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S409000, C428S543000, C521S030000, C521S031000, C521S032000, C521S055000, C521S075000, C521S146000, C521S905000, C521S918000, C502S402000

Reexamination Certificate

active

06582811

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to material for purification of physiological liquids of organism.
It is well known that physiological liquids of organisms such as blood, plasma, peritoneal liquid etc., accumulate and transport various toxicants in the case of poisoning the organism as well as in the case of diseases, in particular diseases of liver and kidneys. It is therefore advisable to remove the toxicants from the physiological liquids to significantly improve the situation of the patient. A plurality of methods have been invented and have been utilized for removing toxicants from blood, plasma and other physiological liquids. One of the most efficient methods is hemodialysis. This method, however, is generally restricted to removing small toxic molecules, whereas toxins belonging to the so-called middle-size molecules (between 500 and 30000 Dalton molecular weight) are eliminated too slowly, even with modern “high flux” dialyser membranes. It is believed to be advisable to further improve the existing methods so as to provide an efficient purification of the physiological liquid of organism, especially with respect to above toxicants having larger molecular sizes, for the purpose of preventing propagation of diseases or curing the disease. Some solutions were disclosed in our earlier patent application Ser. No. 08/1756,445, now allowed U.S. Pat. No. 5,773,384.
SUMMARY OF THE INVENTION
Accordingly, it is an object of present invention to provide a material for purification of physiological liquids of organism, which is a further improvement in the above specified field.
In accordance with present invention, the material for purification of physiological liquids of organism is proposed, which material has a size, a shape, and a structure selected so as to remove toxic compounds from the physiological liquid and is composed of a partially chloromethylated porous highly crosslinked styrene or divinylbenzene copolymer which initially have surface exposed chloromethyl groups in which thereafter chlorine is replaced with an element which forms different surface exposed functional groups with a greater hydrophilicity and greater biocompatibility than that of the chloromethyl group.
In accordance with a preferable embodiment of the present invention, the pore size of the material is selected as being in the range between 1 and 15 nm and the structure of the material is selected such that hydrophobic surface in the above pores should be exposed to middle-size molecules. Thus, hydrophobic microporous and mesoporous polymeric materials are best suited for removing toxicants such as for example beta2 microglobulin and others. These materials may also contain transport-enhancing macropores which surface, however, must be made biocompatible, just like the other surface of the polymer material. When the method is performed in accordance with present invention, it provides for an efficient removal of broad range of toxicants from blood, plasma and other physiological liquids of organism.
The novel features which are considered as characteristic for the present invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments.
DESCRIPTION OF PREFERRED EMBODIMENTS
In accordance with present invention, a purification of physiological liquids of organism by removing toxicants, and other physiological liquids of organism from blood is proposed. A patient's blood is withdrawn from an arterial blood circulatory access point, past through a polymer which removes toxicants, and re-enters the patient through a venous access point. The polymer has such a pore size and a structure which provides the removal of beta-2 microglobulin. More particularly, the pore size of the polymer is within the range 1-15 nm.
The polymers impression can be styrenic, acrylic, or any other polymers satisfying the above mentioned conditions.
One example of the material through which the blood can be passed for purification of physiological liquids of organism is a sorbent for removing toxicants from blood or plasma, which has a plurality of beads of hypercrosslinked polystyrene resin, which beads have a surface modified so as to prevent adsorption of large proteins and platelet and to minimize activation of blood complement system, without affection noticeably the accessability of the inner adsorption space of the beads for small and middle-size toxicant molecules.
To achieve the desired chemical modification of the bead surface, which are intended to enhance the hemocompatibility of the material, one possible approach is the formation of lipid-like layers on the surface of polystyrene beads, which should simulate the structure of biomembranes. Copolymers of 2-methacryloyloxyethyle-phosphorylcholine with n-butyl-methacrylate can be grafted on the surface of materials. The copolymer was shown to adsorb free phospholipids from blood to form an organized structure similar to that of a bilayer membrane. It is believed that membrane-like surfaces are thus formed which reduce adsorption of proteins and platelet from blood and make the material more biocompatible. In our approach, groups of phosphatidylcholine are formed on the surface of polystyrene beads, without a preliminary grafting of the hydrophilic copolymer suggested by Ishihara, et al.
Second approach consists of depositing heparin on the surface of the polystyrene beads. This can be done in several ways, including (I) chemical covalent binding of heparin to the polystyrene chains on the surface of beads, or (ii) electrostatic adsorption of heparin molecules, which are negatively charged, to positively charged ionogenic groups introduced into the surface layer of the beads. Heparin inhibits activation of the blood complement system and prevents formation of clots.
Still another approach consists of binding long hydrophilic polymer chains on the beads surface, which should prevent contacts between blood proteins and cells with the hydrophobic polystyrene surface.
Finally, the fourth approach is depositing high molecular weight fluorinated polyalkoxyphosphazene on the outer surface of the beads. Phosphazene represents the best biocompatible polymeric material. Modification of the sorbent surface consists in contacting the polystyrene beads with an appropriate amount of a solution of the polyphosphazene in an organic solvent. Due to the ability of the hypercrosslinked polystyrene to strongly swell with the solvent, the latter appears completely incorporated into the beads after a short period of time, whereas the dissolved polyphosphazene remains deposited on the surface of beads. The solvent incorporated into the beads is then removed by heating the beads under reduced pressure. The large size of polyphosphazene molecules used in this procedure prevents their penetration into the pores of the beads. Therefore, the whole of the internal surface of the material remains active and accessible to blood toxicants, whereas the outer surface exposes to blood proteins and cells the insoluble in water and biocompatible polyphosphazene.
The chemical modification of the surface of sorbent beads, which is the case in the first three of the above modification approaches, is facilitated by the remarkable peculiarity of the hypercrosslinked polystyrene, namely, that the reactive functional groups of the polymer are predominantly located on its surface. The hypercrosslinked polystyrene is generally prepared by crosslinking polystyrene chains with large amounts of bifunctional compounds, in particular, those bearing two reactive chloromethyl groups. The latter alkylate, in a two step reaction, two phenyl groups of neighboring polystyrene chains according to Friedel-Crafts reaction with evolution of two molecules of HCl and formation of a cross bridge. During the crosslinking reaction, the three-dimensional network formed acquires rigidity.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of and material for purification of physical liquids... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of and material for purification of physical liquids..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of and material for purification of physical liquids... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3086336

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.