Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
1999-02-16
2003-07-08
Chin, Christopher L. (Department: 1641)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C435S006120, C435S007100, C435S007920, C435S069100, C435S069300, C436S538000, C436S539000, C436S548000, C436S166000, C436S174000, C436S175000, C436S176000, C436S177000, C436S178000
Reexamination Certificate
active
06589755
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to new low molecular weight protein fragments that are degradation products of the cartilage oligomeric matrix protein (COMP) unique antibodies to these fragments and methods of using such antibodies to measure the severity of arthritic conditions.
BACKGROUND OF THE INVENTION
Cartilage Oligomeric Matrix Protein (COMP) is a pentamer of molecular weight 435,000 that is part of the extracellular matrix of cartilage. Each monomer of about 87,000 is synthesized and secreted by cartilage chondrocytes. COMP is thought to constitute about 1 percent of the wet weight of cartilage. COMP is similar in structure to the members of the thrombospondin gene family. They are similar in the type 3 repeats and the C-terminal region. Thrombospondins, although similar in structure to COMP, have activities to regulate cell migration, growth and proliferation (such as vascular smooth muscle) and inhibit the growth of endothelial cells (Newton et al., (1994) Genomics 24: 435-439).
The physiological function of COMP is not known but its presence in the synovial fluid and serum has been correlated with osteoarthritis (Sharif et al., (1995) 34: 306-310) and rheumatoid arthritis (Forslind et al., Brit. J. Rheumatology, (1992) 31: 593-598). It has also been proposed as a marker of cartilage turnover in synovial fluid and blood (Saxne and Heinegard, D. (1992) Br. J. Rheumatology 31: 583-591). Moreover, the synovial fluids of rheumatoid arthritis patients that have high levels of COMP contain a 65 kilodalton fragment and possibly (under reducing conditions) traces of a lower molecular weight species (Saxne and Heinegard, D. (1992) Br. J. Rheumatology 31: 583-591). A recent study also demonstrated that the cartilage as well as the synovial fluid from patients with osteoarthritis and rheumatoid arthritis contain fragments ranging from 43 kDa, 67-94 kDa, 150-200 kDa (Dicesare P. E. et al., (1996) J. Orthopaedic Res. 14: 946-955).
Another cartilage matrix protein, cartilage matrix glycoprotein (CMGP), has been found in the serum of osteoarthritic dogs (Fife and Brandt (1989) J. Clin. Invest. 84: 1432-1439) but it has not been shown to be the result of cartilage breakdown. U.S. Pat. No. 4,778,768 discloses the correlation of cartilage damage and measurement of proteoglycan and fragments. The release of the G1 domain of proteoglycan increased with disease severity in rheumatoid arthritis but the larger region of glycosaminoglycan-rich region (CS/KS domain) decreased under the same conditions (Saxne and Heinegard, (1993) Arthritis Rheum. 35: 385-390). This demonstrates that it has until now been unpredictable whether fragments of a protein can predict a disease state.
Aggrecan is a proteoglycan residing in the cartilage. This protein consists of keratan sulfate (KS) side chains. In arthritis, aggrecan degradation products have been found in the synovial fluids of patients. One way of measuring aggrecan degradation products in the synovial fluid and serum is to quantify by an ELISA using antibodies that recognize keratan sulfate side chains (Thonar E J-M A et al., (1995) Acta Orthop. Scand (S266) 66: 103-106). Investigations in several laboratories could not confirm the usefulness in measuring serum KS in arthritic patients.
Thrombospondin (450 kDa) is a high molecular weight adhesive glycoprotein consisting of three identical monomers of molecular weight 150 kDa. It is found in the cartilage and is produced by articular chondrocytes (Miller and McDevitt (1988), Biochem. Biophys. Res. Comm. 153: 708-714). To date there are no reports which document the presence of thrombospondin or its degradation products in the synovial fluid of arthritic patients.
Quantification of serum COMP may have prognostic value for rheumatoid arthritis and osteoarthritis (M Sharif, Saxne T, Shepstone L, Kirwan J R, Elson C J, Heinegard D, Dieppe P A: Br J Rheumatol 34: 4, 306-10,1995.; Hansson B M, Carey D, Alini M, lonescu M, Rosenberg L C, Poole A R, Heinegard D, Saxne T, J Clin Invest 95:1071-7, 1995). However, previous assays which quantify serum COMP do not allow determination of whether cartilage degradation is on-going in an arthritic patient.
Antigenic KS is present in elevated amounts in synovial fluid from human osteoarthritis joints (Shimozuru et al., Orthop. Trans. 20:419 1995). The levels of this and other markers of proteoglycan catabolism are highest during the pre-radiological stages of the disease and tend to drop with time, especially in joints exhibiting secondary inflammatory changes or loss of articular cartilage mass (see Thonar E J-M A et al., Sports medicine & arthroscopy review: chondral injuries (Ed. Andrish J. T). Raven Press, New York 1994: 13-29, for review). This makes interpretation of the data difficult. However, this difficulty can be circumvented by measuring additional markers and reporting the results as ratios of one marker to another (Thonar E J-M A et al., Acta Orthop. Scand. (Suppl 266) 66:103-106 1995). Interestingly, a recent report has claimed that the ratio of antigenic COMP to antigenic KS in the synovial fluid of the same patient may be useful in monitoring changes in cartilage macromolecue turnover (Peterson et al., (1997) Ann. Rheum. Disease 56: 64-67.)
Identification of new proteins or fragments of proteins (degradation products) or ratios of the different proteins or fragments whose presence in the synovial fluid and/or blood serum can be correlated with a disease state such as arthritis (osteoarthritis or rheumatoid arthritis) would be useful for diagnosis and treatment of such diseases. Moreover, the development of new antibodies and other molecules to detect such new proteins or fragments of proteins would allow easily utilized assays to be routinely applied for the diagnosis and treatment of patients with arthritis. For new drug development in arthritis there is a need to have assays to evaluate efficacy of the new drug on the cartilage matrix and a means to select patients for treatment therapies. The present invention has identified new low molecular weight fragments of the COMP protein that are correlated with the progression of arthritis, antibodies which bind to these fragments and assays to measure the severity of arthritis disease states by quantifying these fragments and other known COMP fragments and fragments of thrombospondin-1 (“TSP-1”). In our investigations using the anti-peptide antibody to the carboxy terminal of COMP, what was unforeseen is that specific breakdown products derived from the carboxyl terminal end of this molecule or a ratio of the breakdown products to KS would have diagnostic or prognostic value. It shows that the level of COMP is different than these C-terminal degradation products and reflect something different than the intact molecule. In addition, this antibody was found to recognize the other known COMP fragments. Moreover, this antipeptide antibody unexpectedly recognized the N-terminal 20 kDa fragment of bovine thrombospondin, and full-lenth human TSP-1. Since the N-terminal sequence of bovine and human thrombospondin are identical, this antibody is expected to recognize N-terminal 20 kDa fragment of human TSP-1.
SUMMARY OF THE INVENTION
The present invention is drawn to a group of novel and newly discovered low molecular weight protein fragments that are C-terminal degradation products of COMP. A first group, referred to herein as “LMW-COMP” fragments, have a molecular weight of about 14-33 kilodaltons on SDS-PAGE. Preferably, the LMW-COMP fragments have a molecular weight of about 30, 20, 18, 16 or 14 kilodaltons and most preferably the LMW-COMP is the predominant species of low molecular weight degradation products having an apparent molecular weight on SDS-PAGE electrophoresis of about 20 kilodaltons. This COMP fragment is produced in increasing amounts as the arthritis disease condition becomes more severe. These newly discovered C-terminal COMP fragments are only separated from other COMP components under reducing conditions and therefore their separation depends on assays wherein the s
Chin Christopher L.
Gabel Gailene R.
Novartis AG
Wildman David E.
LandOfFree
Assay for quantifying arthritic conditions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Assay for quantifying arthritic conditions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Assay for quantifying arthritic conditions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3082992