Biogenic control and limitation of the reproduction of...

Plant protecting and regulating compositions – Fertilizers with insecticide – fungicide – disinfectant – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S075000, C514S077000, C514S078000, C514S095000, C514S099000, C514S102000, C514S109000, C514S110000, C514S112000, C514S114000, C514S120000, C514S125000, C514S126000, C514S129000, C514S131000, C514S134000, C514S135000, C514S136000, C514S137000, C514S139000, C514S140000, C514S141000, C514S142000, C514S143000, C514S144000, C514S145000, C514S146000, C514S147000, C514S148000, C514S558000, C514S588000, C514S589000, C514S590000, C514S591000, C514S592000, C514S594000, C514S595000, C514S596000, C514S597000, C514S

Reexamination Certificate

active

06566304

ABSTRACT:

BACKGROUND OF THE INVENTION
The significance of native plant-parasitic nematode strains in crop farming and the crop failures and growth depressions which they cause have been known to experts for decades. In order to combat these unwanted restrictions in arable farming, practice and scientific research have worked out a number of countermeasures. Thus, crop rotation—for example sugar beet, winter wheat and winter barley in a three-year cycle—can contribute towards easing the problems under discussion. Today, the use of synthetic nematicides is at least seriously restricted or prohibited over wide areas of agricultural land on account of the secondary damage which they cause. The incorporation of selected organic substances for improving soil or for controlling nematodes has been established practice for decades. The success of such measures is understood to involve a complex interaction between all soil organisms, see for example R. C. COOKE, 1963, “Succession of Nematophagous Fungi During the Decomposition or Organic Matter in Soil”, Nature 4863; 205 and S. HOFFMANN-HERGARTEN et al., 1993, “Untersuchungen zur Steigerung der Wirkung nematodenfangender Pilze gegen den Heterodera-schachtii Frühbefall durch organische Dünger”, Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 100 (2); 170-175.
The relevant literature is also concerned in particular with attempts to stimulate soil microorganism flora and, more particularly, strains which are capable of developing antagonistic and/or nematicidal effects against plant-pathogenic nematodes, cf. in particular U.S. Pat. No. 5,057,141 and the literature cited therein, above all R. Rodriguez-Kabana et al. in “Plant and Soil”, 100:237 to 247 (1987). According to this particular literature reference, chitin-containing materials in admixture with other organic nitrogen compounds, such as ammonium phosphate and urea, develop nematostatic and nematicidal activity in soils against plant-pathogenic nematode populations, but are not phytotoxic to the plants and actually serve as a food source. The teaching of U.S. Pat. No. 4,536,207 goes in the same direction. This document describes the nematicidal activity of a chitin-protein complex compound which is obtained from a demineralized water-insoluble chitin material and a water-insoluble protein component. For practical application, these water-insoluble fine-particle complex compounds have to be mechanically incorporated in the soil in known manner.
The teaching of the present invention as described in the following is based on the prior art as represented by the U.S. patents cited above. The key components of the mixtures described in these U.S. patents are insoluble in water. This applies in particular to their chitin or chitin complex content. Accordingly, the incorporation of the insoluble material in upper soil layers can only be usefully undertaken in those parts of the soil which do not yet bear any plants. According to U.S. Pat. No. 5,057,141, a pronounced nematicidal effect is only observed in particular in the second successive plant cycle.
By contrast, the problem addressed by the present invention was to provide a soil additive which could in introduced into the affected parts of the soil in liquid form and, more particularly, in the form of an aqueous preparation and which would lead there to rapid development of the antagonistic effects, above all of the microorganism flora active there, towards plant-pathogenic soil nematodes. At the same time, the mixture according to the invention would lend itself to introduction, more especially into the region around the plant roots, both before and also during the sowing or planting of the affected areas of soil and during subsequent plant growth. Accordingly, the teaching according to the invention would make it possible to strengthen the strains of microorganism flora, more especially bacteria and/or fungi, which are present in particular in the rhizosphere or mycorrhiza and hence in the immediate surface region of the plant roots and which are distinguished by antagonistic and/or nematicidal activity towards unwanted nematode infestation of the plant roots.
SUMMARY OF THE INVENTION
Accordingly, the present invention relates to a mixture of components (a) and (b) defined hereinafter as a soil additive in crop cultivation in cultivated soils which are infected by plant-parasitic nematodes and/or in which the desired objective of optimizing the result of crop cultivation is endangered by corresponding nematode infestation. Components of class (a) are compounds of phosphorus containing at least partly lipophilic organic radicals which are used together with (b) urea and/or urea derivatives. The components of class (a) and class (b) are used in such quantity ratios of (a) to (b) that the ratio by weight of carbon (C) to nitrogen (N) does not exceed about 6:1. In a preferred embodiment, the ratio by weight of C to N is at most about 5:1.
In another embodiment, the present invention relates to the use of phospholipids of vegetable origin in combination with urea and/or urea derivatives for the biological control of plant-parasitic soil nematodes by strengthening the correspondingly antagonistic soil potential—more especially by strengthening the growth of antagonistic and/or nematicidal rhizosphere bacteria and/or corresponding mycorrhiza strains—and at the same time promoting the growth of the cultivated plants/crops. In this embodiment, too, the mixtures according to the invention are preferably introduced into the endangered soil in the form of aqueous preparations before and/or more particularly during growth.
DESCRIPTION OF THE INVENTION
Biological life processes and the discernible effects accompanying them are known to be the summary results of highly complex microorganism interactions which can in turn can be determined by a number of external conditions or living conditions. Equal significance attaches in this regard to the growth and development both of microorganism flora and of soil flora. This applies in particular to corresponding development processes in the soil and to the secondary results which they determine in the cultivation of plants in soil. Despite this general understanding, the possibility of permanently influencing these complex and interrelated life processes is still very limited.
DE 44 37 313 A1 describes a process for improving plant growth in agriculture, forestry and horticulture by stimulating the microorganisms that live in the soil in which the plants grow. The document in question proposes the use of certain mixtures based on phospholipids, for example lecithin, and phospholipid derivatives whose use for various purposes in agriculture had already been mentioned. Thus, European patent application EP 95 071 and International patent application WO 89/8628 describe the use of phospholipids together with macronutrients as leaf fertilizers. International patent application WO 93/1150 mentions the use of phospholipids as emulsifiers in fertilizer preparations. According to DE 42 18 243, mixtures of glycerophospholipids and urea can be used to activate certain hydrocarbon-consuming microorganisms so that they degrade mineral oil contamination in soil more quickly. Building on this knowledge, the teaching of DE 44 37 313 proposes using phospholipids and phospholipid derivatives, above all in admixture with urea, to stimulate even those microorganisms which live naturally in uncontaminated soil in order to promote the growth of the plants growing in the soils thus treated by a kind of general fertilizing effect.
Now, the invention is based on an observation which goes even further: the use of the above-mentioned mixtures to be described in detail hereinafter provides for intervention in and hence biological control of the highly complex life system of the soil. The objective in this regard is the control and/or reduction of plant-parasitic nematode growth and, hence, the growth of selected strains of soil fauna by stimulation and hence growth promotion of selected strains of soil microorganism flora in the form

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Biogenic control and limitation of the reproduction of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Biogenic control and limitation of the reproduction of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Biogenic control and limitation of the reproduction of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079031

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.