Method and apparatus to counterbalance intrinsic positive...

Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S204180, C128S204210

Reexamination Certificate

active

06588422

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains to the field of ventilatory support for respiratory failure, particularly due to lung disease, and in particular to automatically providing sufficient end expiratory pressure to unload intrinsic positive end expiratory pressure (PEEPi)
BACKGROUND OF THE INVENTION
Subjects with chronic airflow limitation (CAL) due, for example, to emphysema and chronic bronchitis, may require ventilatory assistance, particularly during periods of acute exacerbation, or routinely at night.
Ventilatory support can reduce the work of breathing, reduce the sensation of breathlessness, and improve blood gases (oxygen and carbon dioxide levels). In subjects with CAL, most of the work of breathing is due to the high airway resistance. Approximately two thirds of this resistance is relatively fixed, and due to narrowing of the airways. However, of the order of one third of the resistance is due to dynamic airway compression during expiration. Dynamic airway compression occurs when the pleural pressure exceeds the pressure in the lumen of the airway during expiration, causing flow to become independent of effort.
In a normal subject, the alveolar pressure decays exponentially during expiration, so that the expiratory flow and alveolar pressure (relative to atmospheric) are both approximately zero at the end of expiration, and the lungs and chest wall have returned to their passive equilibrium volume V
R
. In patients with CAL, however, as a result of dynamic airway compression and fixed reduced expiratory flow rate, it is not possible for the lungs to return to V
R
in the time allowed before the start of the next inspiration. The chest is hyperinflated. The alveolar pressure remains positive, on the order of 5 to 15 cmH
2
O at the end of expiration. This raised alveolar pressure is termed intrinsic positive end expiratory pressure, or PEEPi. (Other names for the phenomenon are covert PEEP and occult PEEP.)
An important effect of the hyperinflation is that the patient must overcome the elastic recoil of the hyperinflated chest wall before inspiratory airflow can commence. The PEEPi is said to act as an inspiratory threshold load. A further undesirable effect of PEEPi is that during artificial mechanical ventilatory support, it interferes substantially with the triggering of the ventilator, causing patient-machine asynchrony.
It is now well understood that the addition of a counterbalancing external positive end expiratory pressure (called external PEEP, or just PEEP), approximately equal in magnitude to PEEPi, is of great benefit. First, it prevents dynamic airway compression, permitting greater expiratory airflow. Second, it balances the inspiratory threshold load. Third, it improves triggering of a ventilator by the patient.
Use of excessive PEEP, however, can be disadvantageous and even dangerous. Excessive PEEP above and beyond PEEPi will cause yet further hyperinflation. This will result in stiffening of the lung and chest wall, and an increase in the elastic work of breathing. It will also cause reduced cardiac output, and can lead to barotrauma. Further, the peak inspiratory airway pressure during ventilatory support cannot be arbitrarily increased without either exceeding the capacity of the ventilator, or reaching a pressure that is itself dangerous. Finally, excessive external PEEP will also reduce the possible airway pressure excursion or headroom available for lung inflation.
Therefore, it is advisable when applying external PEEP to set the external PEEP as close as possible to PEEPi. Since PEEPi varies from time to time, depending on a number of factors including, for example, the resistance of the small airways and the respiratory rate, both of which change with changing sleep stage, chest infection, or bronchospasm, it is desirable to be able to make multiple, or even continuous, measurements of PEEPi in order to optimize external PEEP.
A typical patient in an intensive care unit is heavily sedated and paralyzed during ventilatory support, and it is straightforward to measure the PEEPi. It is necessary only to occlude the airway during late expiration, and measure the airway pressure, which, after a few seconds of equilibration, will equal static PEEPi. Since the lung injury in CAL is usually markedly heterogeneous, different alveoli will have different end expiratory pressures, and static PEEPi is therefore a weighted average across all alveoli.
Another known method which is suitable for use in the paralyzed sedated patient is to measure the airway pressure at the start of machine inspiratory effort, and again at the start of actual inspiratory airflow. The difference between these two pressures is the dynamic PEEPi. Dynamic PEEPi reflects the end expiratory pressure in the least abnormal lung units, and substantially underestimates static PEEPi.
These simple methods do not work for patients who are not sedated and paralyzed, and who are making spontaneous breathing efforts, because they do not take into account the patients' own respiratory muscle efforts.
One known method that is used with such patients requires a Muller manoeuvre (maximal inspiratory effort) during catheterization of the oesophagus and stomach, and is therefore completely unsatisfactory for repeated or continuous measurements in the ambulatory patient or the patient who is being treated at home long-term.
Methods for measuring the airway conductance in spontaneously breathing patients using oscillometry are taught by Peslin et al.,
Respiratory Mechanics Studied by Forced Oscillations During Mechanical Ventilation
, Eur Respir J 1993; 6:772-784, and by Farre et al.,
Servo Controlled Generator to Measure Respiratory Impedance from
0.25
to
26
Hz in Ventilated Patients at Different PEEP Levels
, Eur Respir J 1995; 8:1222-1227. These references contemplate separate measurements for inspiration and expiration. Oscillometry requires modulation of the airway pressure at a high frequency, such as 4 Hz, and measurement of the resultant modulation of the respiratory airflow at that frequency. However, these references fail to describe servo-controlling of ventilation to increase or decrease PEEP so that the inspiratory arid expiratory conductances are approximately equal.
Oscillometry has been used to control nasal CPAP (see U.S. Pat. No. 5,617,846) or bilevel CPAP for the treatment of obstructive sleep apnea (see U.S. Pat. No. 5,458,137). The problem there is essentially opposite to the problem under consideration here. In obstructive sleep apnea, there is increased resistance during inspiration, and the above two patents teach that increased resistance during inspiration can be treated by an increase in pressure. In patients with CAL and dynamic airway compression, there is increased resistance during expiration.
There is no known method or apparatus which can automatically or continuously control a ventilator or CPAP apparatus in conscious spontaneously breathing patients in order to prevent expiratory airflow limitation or to unload PEEPi in CAL.
Yet another known method for estimating PEEPi, taught, for example, by Rossi et al.,
The Role of PEEP in Patients with Chronic Obstructive Pulmonary Disease during Assisted Ventilation
, Eur Respir J 1990; 3:818-822, is to examine the shape of the expiratory flow-volume curve, which has been observed to be exponential, if there is no dynamic airway compression. The reference further notes that in the absence of PEEPi, the flow-volume curve becomes a straight line.
The above known art only contemplates the application of an external pressure which is constant during any one expiratory cycle. However, the elastic recoil of the lung is higher at high lung volume, and lower at low lung volume. Therefore, it may be advantageous to find the minimum external pressure at each moment in time during an expiration that will prevent dynamic airway compression during that expiration.
It is an object of our invention to vary the ventilatory pressure during expiration as a function of the degree of the patient's dynamic airway compress

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus to counterbalance intrinsic positive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus to counterbalance intrinsic positive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus to counterbalance intrinsic positive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3078002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.