Method of treating a substrate

Coating processes – Direct application of electrical – magnetic – wave – or... – Polymerization of coating utilizing direct application of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S240000, C427S299000, C427S430100

Reexamination Certificate

active

06528128

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 11-113660, filed Apr. 21, 1999, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
This invention relates to a substrate-treating technique in the manufacturing process of a semiconductor device, and in particular, to a substrate-treating device and a substrate-treating method for effectively feeding a chemical to the surface of a substrate for the treatment thereof.
In the manufacturing process of a semiconductor device or a liquid display device, the surface of substrate is subjected to various treatments or workings, thereby ultimately forming a fine pattern to provide the device with a desired function. In order to perform such treatments of substrate, not only a dry process using a gas, but also a wet process using a chemical solution are widely employed. This wet process is employed for instance in a development treatment to be performed after the exposure of a photosensitive resist, in the working of an exposure chromium mask, in the removal of undesired organic substance that has been adhered onto a substrate, in the removal of a photosensitive resist pattern left remained after finishing an etching treatment, or in a metal-plating on the surface of a silicon wafer.
There are known, as a wet process, a dipping method wherein a substrate is dipped in a solution of chemicals (or a chemical liquid) and a paddling method wherein a substrate is treated by feeding a chemical liquid to the main surface of the substrate. Since the dipping method is accompanied with problems that a large quantity of chemicals is required and the substrate may be contaminated through the reverse side thereof, the paddling method is increasingly substituted for the dipping method.
According to the conventional paddling method, a chemical is fed to the surface of substrate from a chemical supply source which is disposed above the substrate while allowing the substrate to rotate, the back side thereof being fixed by means of a vacuum chuck. However, since the delivery pressure of the chemical liquid as well as the quantity per unit area of a chemical liquid to be fed to the central surface portion of substrate are caused to differ from those to be fed to the marginal surface portion of the substrate according to this conventional method, it is impossible to achieve a high working precision.
With a view to overcome this problem, Japanese Patent Unexamined Publication No. 7-36195 discloses a method wherein a chemical liquid is fed to the main surface of substrate while moving a chemical-feeding section from one side of the substrate to the other side thereof. By contrast to the aforementioned rotational paddling method, it is possible according to this method to minimize the aforementioned difference in delivery pressure and in quantity of chemicals to be fed per unit area of the substrate. This method is further modified as disclosed in Japanese Patent Unexamined Publication No. 8-31729.
Namely, Japanese Patent Unexamined Publication No. 8-31729 describes a technique wherein the chemical-feeding section is provided at a lower portion thereof with a slit-like discharge port which is extended orthogonal to the moving direction of the chemical-feeding section and has the same width as that of the substrate to be treated, thereby enabling a chemical to be fed perpendicular to the main surface of the substrate from the discharge port. However, this raises another problem that since the liquid is discharged perpendicularly from the slit-like discharge port and strongly impinges against the surface of substrate, a turbulent flow is caused to generate on the surface of the substrate. Further, as a result of this turbulent flow, a fresh chemical is caused to mix with a reaction product, thereby non-uniformly lowering the concentration of the chemical and hence, giving rise to a non-uniform processing.
Japanese Patent Unexamined Publication No. 8-31729 also discloses that the direction of feeding a chemical liquid is inclined relative to the surface of substrate, and the chemical liquid is delivered from a port which is arranged approximately parallel with the surface of substrate. However, since the transport and feeding of a chemical liquid is executed using a continuous tube with high pressure to feed into high flow-resistant tube, the solution is caused to be fed at a high pressure to the surface of substrate, thus causing a turbulent flow to be generated on the surface of the substrate.
According to the aforementioned methods, since a high feeding pressure is applied to the discharge port, even a slight difference in working precision of the discharge port would invite a difference in pressure as well as in flow rate, thus deteriorating the working precision of the substrate.
On the other hand, according to the techniques described in these publications, the moving speed of the chemical-feeding means is taken into account with regard to the forward portion in the moving direction of the chemical-feeding means so as not to allow the chemical liquid to get ahead of the chemical-feeding means. However, no consideration is taken into account with regard to the flowing of the chemical liquid toward the direction (chemicals-feeding direction) opposite to the moving direction of the chemical-feeding means. Therefore, according to the techniques of these publications, the chemicals supplied to the substrate are allowed to flow to the downstream side while being mixed with a reaction product. As a result, the reaction speed at the downstream side becomes slower, thus giving rise to a problem that the dimensional precision of worked substrate is deteriorated.
Further, Japanese Patent Unexamined Publication No. 10-223507 discloses a method wherein a chemical liquid is fed as shown in
FIG. 5A
from a discharge port via a transporting face arranged contiguous with the discharge port to the surface of substrate. According to this system, the angle for feeding a chemical liquid to the surface of substrate may be approximately perpendicular to the surface of substrate or slightly inclined to the surface of substrate. Although the discharge port portion according to this system is an open type, a chemical liquid is caused to be transported along the transporting face disposed contiguous with the discharge port, so that the feeding pressure of chemicals would not be weakened, thus causing a chemical liquid to be fed to the surface of substrate at a very high speed.
In
FIG. 5A
, the size of the arrows shown therein indicates the magnitude of the feeding speed of a chemical liquid. As shown herein, in this case also, a turbulent flow of the chemical liquid is caused to generate at the portion of substrate where the chemical liquid is fed, or a phenomenon wherein the chemical liquid is caused to flow in the feeding direction thereof, or a reaction product is caused to flow toward the downstream side would be generated. Due to these unstable factors, the working precision of substrate is caused to deteriorate even in this system.
As explained above, the conventional wet process is accompanied with a problem that since the pressure of feeding a chemical liquid to the main surface of substrate is high, a turbulent flow of the chemical liquid is caused to generate on the surface of the substrate, thereby giving rise to the deterioration of working precision of the substrate.
BRIEF SUMMARY OF THE INVENTION
Therefore, the object of the present invention is to provide a substrate-treating device which is capable of extremely lowering the velocity and feeding pressure of a chemical liquid on the occasion of feeding the chemical liquid to a substrate to be treated (hereinafter, referred to simply as a substrate), thereby enabling the working precision of the substrate to be improved.
Another object of the present invention is to provide a method of treating a substrate which is capable of extremely lowering the velocity and feeding press

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of treating a substrate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of treating a substrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating a substrate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077933

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.