Radiant energy – Irradiation of objects or material – Irradiation of semiconductor devices
Reexamination Certificate
2001-03-28
2003-09-02
Lee, John R. (Department: 2881)
Radiant energy
Irradiation of objects or material
Irradiation of semiconductor devices
C250S492210, C250S492100
Reexamination Certificate
active
06614034
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to microlithography (transfer of a pattern, defined on a reticle or mask, to a sensitive substrate) performed using a charged particle beam (e.g., electron beam or ion beam). Microlithography is a key technique used in the manufacture of microelectronic devices such as integrated circuits and displays. More specifically, the invention pertains to magnetically shielding the charged particle beam from adverse influences of magnetic fields generated by linear motors used to support and move a reticle stage and a substrate stage during charged-particle-beam microlithography.
BACKGROUND OF THE INVENTION
The ongoing push for increased integration in microelectronic devices has resulted in a current need for being able to transfer patterns having a minimum line width of less than 100 nm. Resolution at this level cannot be achieved using “optical” microlithography (i.e., microlithography performed using a light beam, typically a deep-ultraviolet light beam). Charged-particle-beam (CPB) microlithography is an attractive candidate technique for achieving such resolution, for essentially the same reasons that electron microscopy achieves better resolution than light microscopy.
Unfortunately, using current technology, CPB microlithography cannot be performed satisfactorily by exposing an entire reticle pattern (for an entire layer of a “die” or “chip” on the substrate) in one exposure or “shot.” A promising current approach to performing exposure of entire patterns is to divide the reticle into multiple exposure units usually termed “subfields,” each defining a respective portion of the overall pattern, and exposing the subfields individually according to a preset order. This approach, termed “divided-reticle” CPB microlithography, offers prospects of achieving the required resolution at a reasonable throughput.
In divided-reticle CPB microlithography, the reticle is mounted on a movable reticle stage, and the substrate (e.g., a semiconductor wafer) is mounted on a movable substrate stage. As noted above, the reticle is divided into multiple subfields that are exposed sequentially. Exposing subfields does involve a limited magnitude of lateral beam deflection. But, to expose all the subfields, coordinated movements of the reticle stage and substrate stage also are required. The coordinated movements also ensure that the respective images of the subfields are formed at respective locations on the substrate such that an image of the entire pattern is “stitched” together properly in a contiguous manner from the individual subfield images.
The reticle stage and substrate stage are driven in each of the X- and Y-directions by a respective linear-induction motor (“linear motor”). (The direction of propagation of the charged particle beam is regarded as a Z-axis direction; hence, the reticle and substrate extend in respective X-Y planes.) The reticle stage and substrate stage, as well as their accessory parts such as the respective linear motors, are housed in respective chambers termed the “reticle chamber” and “substrate chamber,” respectively.
In a CPB microlithography apparatus, the charged particle beam must propagate in a “vacuum” environment (extremely low subatmospheric pressure). To such end, the various lenses, deflectors, diaphragms, and the like are contained in a “CPB-column” which is essentially a vacuum chamber. The CPB-column typically includes a first portion housing an illumination-optical system and a second portion housing a projection-optical system. In addition, the reticle chamber and substrate chamber are maintained at respective vacuum levels.
A charged particle beam, even though it is contained within a CPB-column, can be affected by external magnetic fields, which can alter or disrupt the trajectory of the beam within the column and thus degrade pattern-transfer accuracy and/or resolution. In order to obtain the desired high level of pattern-transfer accuracy and resolution, various approaches have been considered for protecting the beam from external magnetic fields. According to one approach, the entire CPB microlithography apparatus is contained in a magnetically shielded room. In this regard, see Ogasawara et al.,
Teion Kogaku
8(4):135-147, 1973. However, because a CPB microlithography apparatus is a very large machine, the room containing it also must be large, and magnetically shielding a large room is difficult and very expensive. If the shielding is performed using a ferromagnetic material having a given thickness and a given number of layers, then the shielding factor decreases in inverse proportion to the room dimensions. Hence, with increased room size, the shielding material must be made very thick and/or configured with a large number of layers to achieve the same degree of shielding in the room.
A conventional linear motor used for driving a reticle stage or a substrate stage generates a large (several hundred mGauss) DC magnetic field as well as a fluctuating magnetic field of a few dozen mGauss. These magnetic fields can have a significant effect on the charged particle beam, which presents a substantial problem in machine design. Inside the CPB-column, the effect of these magnetic fields must be reduced to about 1 mGauss or less to achieve high transfer accuracy and resolution. But, heretofore, the best approach for achieving this goal has been unclear.
SUMMARY OF THE INVENTION
In view of the shortcomings of conventional approaches as summarized above, an object of the present invention is to provide charged-particle-beam (CPB) microlithography apparatus that can achieve high pattern-transfer accuracy and resolution without having to install the apparatus in a magnetically shielded room. Another object is to reduce the effects of magnetic fields, generated by the linear motors that drive the reticle stage and substrate wafer stage, on beam trajectory in a CPB microlithography apparatus.
To such end, and according to a first aspect of the invention, CPB microlithography apparatus are provided. An embodiment of such an apparatus includes an illumination-optical system and projection-optical system contained within a CPB-column. The embodiment also includes a reticle stage configured to hold a reticle during microlithographic exposure, and a substrate stage configured to hold a substrate during microlithographic exposure. Each of these stages is actuated by a respective linear motor. The reticle stage and its respective linear motor are enclosed in a reticle chamber that is situated between the illumination-optical system and the projection-optical system and is made of a ferromagnetic material. Similarly, the substrate stage and its respective linear motor are enclosed in a substrate chamber that is situated downstream of the projection-optical system and also is made of a ferromagnetic material. Situated in the reticle chamber is a first partition shield made of a ferromagnetic material and situated between the respective linear motor and the CPB-column. The first partition shield defines a gap allowing unobstructed movement of the reticle stage through the gap. Situated in the substrate chamber is a second partition shield made of a ferromagnetic material and situated between the respective linear motor and the CPB column. The second partition shield defines a gap allowing unobstructed movement of the substrate stage through the gap.
Desirably, each of the first and second partition shields comprises opposing lip portions having respective edges between which the respective gap is defined. Also, each partition shield desirably is attached to an inside wall of the respective chamber by a non-magnetic fastener.
Each of the reticle and substrate stages can be regarded as extending in a respective X-Y plane that is perpendicular to a Z-axis (the Z-axis normally is parallel to the optical axis of the illumination-optical and projection-optical systems). Hence, each partition shield can comprise a first portion extending in a respective X-Y plane on one side of the respective linear motor, and a secon
Klarquist & Sparkman, LLP
Lee John R.
Nikon Corporation
Quash Anthony
LandOfFree
Charged-particle-beam microlithography apparatus and methods... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Charged-particle-beam microlithography apparatus and methods..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Charged-particle-beam microlithography apparatus and methods... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3076965