Precision metal locating apparatus

Electricity: measuring and testing – Magnetic – With means to create magnetic field to test material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S225000, C324S232000, C324S233000, C324S235000, C324S247000, C324S329000, C340S551000, C600S550000

Reexamination Certificate

active

06541966

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an apparatus for detecting metals. In particular, the metal detector may be used for locating buried metal objects or for locating foreign metal objects in a human or animal body. The apparatus can provide the user with a location and some information on the shape and form of the detected metal.
2. Discussion of Prior Art
The term, ‘metal detector’ usually refers to a class of instruments where a coil is energised with a changing electrical current which induces small “eddy currents” in any nearby metal through a process of magnetic induction. The induced eddy currents have their own associated magnetic fields that are detected, usually with coils, mounted on the detector. There are two main types of metal detector; the pulse-induction (p-i) and the continuous wave.
Pulse-induction (p-i) detectors use a square wave (or alternative shape which has a sharp edge) signal in the transmitter coil. The high rate-of-change of magnetic field creates a voltage pulse in any nearby metal. This pulse generates an eddy current which decays in time. The receiver coil is gated to look for the eddy current associated with this decay at a specified time, and for a specified duration, after the edge in the transmit cycle.
Continuous wave (c/w) detectors use a sinusoidal a.c. electrical current in their transmitter coil to establish an a.c. magnetic field. A receiver coil, which is sensitive to signals at the same frequency as the transmitter signal, detects the presence of eddy currents within any nearby metal. There are difficulties with the transmit signal being directly detected by the received coil. Several configurations of this c/w mode of operation have been developed to overcome this.
One configuration which helps to overcome this direct pickup of the transmitter coil is to use orthogonal transmitter and receiver coils. Precise alignment and highly stable mounting of the coils is required to achieve nulling of the transmitted field. Another approach is to use a receiver coil which is topologically a figure of eight, and is sensitive only to differences in field between the two halves. This differencing arrangement can be balanced to null out the transmitter signal. The differencing coil technique has a small advantage over the orthogonal coil method in that it is slightly more accurate at indicating when the detector is directly over the metal. C/w instruments are able to discern ferrous from non-ferrous metals by measuring the relative phase of the received signal with respect to the transmitted one.
Both of these types of metal detector indicate whether there is a metal present in a relatively large volume of space around the coils. This limits the number of applications for metal detectors to those where accurate location of the metal is not required. In some instances, such as in airport security systems, a person walks through a metal detector “doorway”. If a metal is detected then security personnel conduct a detailed search with a small hand-held detector to localise the metal. This is somewhat intrusive and time-consuming and only possible because the small detector can get very close to the metal. Also, this simple “YES-NO” detection gives the user no information about the shape of the metal. These factors can lead to a high false alarm rate in circumstances where the user wishes to find particular types of metallic items.
In German patent DE 3713363, a metal detector is described in which c/w operation with differencing receiver coils and ferrous
on-ferrous discrimination. This represents a significant improvement on many previous configurations but only provides the user with limited information on the metal it detects. The additional information it provides over more basic detectors is a slight improvement in discerning the position of the metal and the ferrous
on-ferrous discrimination from the phase information.
However, it some instances it may be desirable to learn additional information about the metal, in particular an accurate location and an estimate of its size and shape. This cannot be achieved using the prior art. Only ferrous and non-ferrous metals can be distinguished. It is an object of the present invention to provide an apparatus for detecting metals which overcomes the limitations of the prior art and which has the ability to locate accurately and quantify the electro-magnetic cross section of a metal.
SUMMARY OF THE INVENTION
According to the present invention, an apparatus for detecting a metal object having a shape, an electro-magnetic cross-section and a location comprises;
transmitter means for generating a magnetic field in the vicinity of the metal object to be detected, thereby inducing currents within the metal object, the induced currents generating a secondary magnetic field,
detection means for detecting the secondary magnetic field,
characterised in that the detection means comprise means for measuring at least three magnetic field gradient components of at least first order of the secondary magnetic field and further characterised in that the apparatus comprises processing means for determining at least one of the location, an electro-magnetic cross-section or an estimate of the shape of the metal object from the measured first order magnetic field gradient components.
This invention provides two distinct advantages over prior art metal detectors. A more accurate location of a detected metal is obtained, which may be output as coordinates once the metal has been detected. Measurement of an electro-magnetic cross-section, that is a function of the shape and composition of the metal, provides a further advantage in that it may be used as a means of providing discrimination against the detection of metal objects of a certain type which are not of interest to the user. Alternatively, or in addition, metal objects of a particular type and known electro-magnetic cross section or shape can be looked for in particular. For example, archaeological items such as coins may be positively distinguished and can ring-pulls may be discriminated against.
The apparatus may comprise means for generating a pulsed or an alternating magnetic field and a computer inversion algorithm for calculating the properties of the detected metal.
In one embodiment of the invention the apparatus may comprise means for measuring at least five magnetic field gradient components of at least first order and sensing means for measuring one or more component of the secondary magnetic field. These are to provide the inversion algorithm with enough data to compute the target properties. The sensing means may be any one of a coil, a Super-conducting Quantum Interference Device (SQUID), a fluxgate, a Hall probe, a magneto-resistive device or a magneto-impedance device. It may be preferable to include three sensing means in the apparatus, each oriented to sense the magnetic field component in a different orthogonal directions. This means that the transmitted magnetic field may be transmitted in any of three orthogonal directions, with the appropriately oriented sensing means being used to measure the required secondary magnetic field component.
In another embodiment of the invention, the apparatus may comprise means for measuring at least three magnetic field gradient components of second order.
The apparatus may comprise at least three pairs of gradiometric receiver coils, each pair for detecting a different first order magnetic field gradient component, each of the gradiometric coil pairs having a baseline, d. Alternatively, the apparatus may comprise at least three pairs of any one of SQUIDs, fluxgates, Hall probes, magneto-resistive devices or magneto-impedance devices, each pair for detecting a different first order magnetic field gradient component, each of the pairs having a baseline, d. Preferably, the baseline is no greater than the distance between the metal to be detected and the means for measuring the magnetic field gradient components. The preferred baseline will depend on the particular applica

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Precision metal locating apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Precision metal locating apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precision metal locating apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3065530

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.