Ophthalmic dispensing device

Surgery – Means for introducing or removing material from body for... – Treating material applied to or removed from external...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S295000, C604S141000, C222S387000

Reexamination Certificate

active

06547770

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a manually operated dispensing device for delivering ophthalmic solution to the surface of an eye in a desired spray pattern with an impact pressure on the eye that is comfortably tolerated by an individual.
Traditionally, eye wash with an ophthalmic solution such as an isotone (0.9%) solution of sodium chloride, have been performed by pouring a relatively large amount of solution into the eye. The solution is conventionally maintained in a flexible container, the sealing of which is broken when the solution is to be used. Thereafter, the flexible container is held above the contaminated eye and the container is squeezed to allow a flow of solution into the eye. Although the result most often is good, the eye being adequately rinsed, the method suffers from a number of drawbacks. The amount of solution which flows out of the flexible container when it is squeezed is undesirably high, resulting in a loss of solution and an undesirable wetting of clothes etc. In this regard an excess of solution used does not improve the rinsing of the eye. Also, a certain free space is required above the eyes of the individual to be treated, in order for the container to be held above the eyes. Moreover, each container can only be used once since, when the seal has been broken, the sterilization of the solution remaining in the container is destroyed.
In U.S. Pat. No. 5,152,435 there is shown a manually operated dispensing pump intended to provide a precise quantity of ophthalmic solution to the surface of an eye in a desired spray pattern with an impact pressure on the eye that is comfortably tolerable by an individual. By the pump, the solution is pumped from a nonpressurized container. Although the object of the pump as shown is to provide a desired diverging spray pattern with a low impact pressure, it has been found that the spray flow from a manually operated pump, operatively connected to a nonpressurized container, is difficult to control. The resulting spray flow depends too much on the person using the pump, which means that too weak a press or too hard a press on the actuator button will result in undesired flow properties, such as spray pattern, droplet size and impact pressure, in the flow which is produced. Moreover, when the pump has not been used for some time, the actuator button must be pressed down a number of times before solution has been transported through the pipe all the way up to the nozzle. This means that the delivery of solution takes some time, time which may be crucial for the recovery of the eye.
From SE 451 295 there is known another device for delivering ophthalmic solution to the surface of an eye. The device exhibits a container for the solution which container also contains a drive gas capsule. When the device is to be used, the capsule is penetrated and the drive gas is brought to expand inside a rubber pouch. By the expansion of the rubber pouch, the solution is brought to form a spray flow via a nozzle. The device has at least the drawbacks that it can only be used once, and that instructions are needed in order for the individual to understand how to use the device. It is easy to understand that an individual who has received chemical or physical contamination in the eyes, cannot read information on the device, which means that there is a risk of misuse of the device, leading to a fatal result for the eyes.
For other types of dispensing devices, such as nose sprays, shaving foam, cosmetic sprays, etc., it is known to use a “bag-in-can” concept in order to achieve a pressurized dispensing device without the use of halogenated compounds in the drive gas. The “bag-in-can” concept includes a pressure container having a closed bottom and an open top defining a neck, for accommodating a pressurized gas and a sealed, flexible pouch. The pouch, which accordingly is accommodated inside the container is made of an essentially diffusion proof barrier material and exhibits a valve which is integrated with a mounting cup adapted to fit the neck of the container. When the container is to be filled with liquid and drive gas, the drive gas is filled into the container first. Thereafter, the open neck of the container is sealed by the mounting cup being crimped onto the neck of the container. Now, the liquid is filled into the pouch via the valve in the mounting cup, so that a desired total pressure is achieved inside the pouch/container. Although the “bag-in-can” concept has been known for some time, it has not been suggested to use the concept in connection with a manually operated dispensing device for delivering ophthalmic solution to the surface of an eye.
None of the above identified prior art devices is directed to a manually operated dispensing device for delivering ophthalmic solution to the surface of an eye, which device can be used to deliver the solution in a desired non-excessive spray pattern, with a desired impact pressure and a desired droplet size, very soon after an eye contamination has occurred, without the need of special instructions for the use of the device, and which device can be used over and over again while retaining the sterilization of the solution.
Therefore, it is a primary object of the present invention to provide a manually operated pressurized dispensing device for delivering ophthalmic solution to the surface of an eye, very soon after an eye contamination has occurred, without the need of special instructions for the use of the device, and which can be operated from any position.
It is a further object of the present invention to provide a manually operated pressurized dispensing device for delivering ophthalmic solution to the surface of an eye, in a desired non-excessive spray pattern, with a desired impact pressure and desired droplet size.
It is a further object of the present invention to provide a manually operated pressurized dispensing device for delivering ophthalmic solution to the surface of an eye, which device can be used over and over again while retaining the sterilization of the solution.
SUMMARY OF THE INVENTION
The manually operated dispensing device of the present invention is provided for delivering ophthalmic solution to the surface of an eye, in a desired non-excessive spray pattern, with a desired impact pressure and desired droplet size, very soon after an eye contamination has occurred, without the need of special instructions for the use of the device, over and over again while retaining the sterilization of the solution.
The device according to the invention comprises a pressure container having a closed bottom and an open top defining a neck, for accommodating a pressurized gas and a pouch; a sealed pouch, for the ophthalmic solution, made of a barrier material and exhibiting a valve which is integrated with a mounting cup adapted to fit the neck of the container; and an actuator adapted to fit the mounting cup of the sealed pouch, comprising a nozzle member including a cylindrical tube member, adapted to interact with the valve, and an actuator button for activating the interaction between the nozzle member and the valve, in order to accomplish the desired spray pattern.
The nozzle member of the present pressurized dispensing device is designed to give the desired non-excessive spray pattern, with a desired impact pressure and a desired droplet size. Especially, this is achieved by the design of the cylindrical tube member, which exhibits a venturi passageway including a nozzle outlet which creates a conical spray pattern which diverges at an angle &agr; in the range of between 6 and 12° from the longitudinal axis C of the venturi passageway. By this nozzle member, being operatively connected with the pouch inside the container, there is provided a flow of said ophthalmic solution of 1-20 ml/10 sec, preferably 2-16 ml/10 sec, at a major droplet size of 20-400 &mgr;m, preferably 35-90 &mgr;m. A small droplet size will efficiently give a large specific rinsing surface of the spray and also the impact pressure will be low for each droplet, thus

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ophthalmic dispensing device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ophthalmic dispensing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ophthalmic dispensing device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064256

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.