Method of recording a multi-layer optically recordable...

Dynamic information storage or retrieval – Condition indicating – monitoring – or testing – Including radiation storage or retrieval

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S053200, C369S094000, C369S275400, C369S284000

Reexamination Certificate

active

06552985

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the field of optically recordable information carriers with multiple information layers accessible from the same side of the media.
BACKGROUND OF THE INVENTION
The invention relates to a method of recording information onto an optically recordable information carrier having at least two different superposed optically recordable layers. The method includes a first step in which information is recorded on a first one of the optically recordable layers by laser light to which the information carrier is exposed from a first side. The first step is followed by a second step in which information is recorded on a second one of the optically recordable layers, light to which the information carrier is also exposed from the first side.
The invention further relates to a recording apparatus for the recording of information on an optically recordable information carrier having at least two different superposed optically recordable layers. The apparatus includes comprising a device adapted to record information on a first one of the optically recordable layers by laser light to which the information carrier is exposed from a first side. The device is also adapted and to record information on a second one of the optically recordable layers, which second layer differs from the first layer, by laser light to which the information carrier is also exposed from the first side.
Optically recordable information carriers are generally known and are used in recording apparatuses which record data on the information carrier by a laser beam. The laser beam is focused into a focal spot on a recording layer in the information carrier. In the case of an adequate laser beam intensity the optical properties of the recording layer at the location of the focal spot will change, as a result of which a mark is produced in the recording layer. By varying the laser beam intensity a pattern of marks can be formed in the recording layer. The recorded pattern contains the data to be recorded in coded form. An example of such an optically recordable information carrier is the CD-R (Compact Disc Recordable).
In order to extend the storage capacity of optically recordable information carriers information carriers have been introduced which include a plurality of superposed recording layers. Examples of such multi-layer optically recordable information carriers are described in U.S. Pat. Nos. 5,761,188 and 5,202,875. Each recording layer in a multi-layer optically recordable information carrier can be inscribed separately by focusing the laser beam onto the relevant recording layer. The recording apparatuses use a high numerical aperture (NA). Owing to this high numerical aperture, the diameter of the laser beam, at the location of the recording layers situated between the source of the laser beam (laser light source) and the recording layer to be inscribed (hereinafter referred to as the intermediate layers), is comparatively large. As a result of this, the intensity of the laser beam at the location of the intermediate layers will be inadequate intensity to produce marks on these layers, whereas producing marks on the layer to be inscribed is possible. Also at the location of each of the intermediate recording layers, having a distance between the respective layer and the laser light source which is larger than the distance between the recording layer to be inscribed and the laser light source, the intensity of the laser beam is inadequate to produce marks in these layers owing to the comparatively large diameter of the beam.
Although the intermediate layers cannot be inscribed, they have on influence on the laser beam. A part of the laser beam will be reflected, diffused and absorbed by the intermediate layers. The remainder of the laser beam, quantified by the transmission coefficient, will be transmitted by the intermediate layers. The magnitude of the transmitted part depends on the optical properties of the intermediate layers. However, the optical properties of the intermediate layers change when these layers are inscribed. The intensity of the laser beam should be so high that in all cases each recording layer in the multi-layer optically recordable information carrier can be inscribed.
The above citations are hereby incorporated in whole by reference.
It is an object of the invention to provide a method of writing information onto an optically recordable information carrier, which allows the sequence in which the recording layers are inscribed to be selected in an optimum manner.
The method includes a first preparatory step in which the changes of the effective transmission properties of the optically recordable layers before the recording of information on the layers with respect to the effective transmission properties of the optically recordable layers after the recording of information on the layers is determined. The first step is followed by a second preparatory step in which the sequence of recording of the first and the second optically recordable layer is determined. If the changes of the effective transmission properties of the optically recordable layers are known a priori, they can be communicated to the method, for example, by a user or a recording apparatus. The sequence in which the optically recordable layers are inscribed can be determined in an optimum manner, for example, so as to minimize the laser beam intensity required for inscribing these layers. This results inter alia in the heat generation during recording onto the optically recordable information carrier not being unduly large and in the possibility of using a comparatively simple and cheap laser light source.
In a variant of the method the first preparatory step includes the reading of information about the changes of the effective transmission properties of the optically recordable layers from an area on the optically recordable information carrier. Such area contains information about the physical properties of the optically recordable information carrier. If the optically recordable information carrier has an area which contains information about the physical properties of the optically recordable information carrier, such as for example a lead-in area, the method can automatically read this information and derive from this information the changes of the effective transmission properties of the optically recordable layers. The area containing information about the physical properties of the optically recordable information carrier may be provided during the manufacture of the optically recordable information carrier.
In a special variant of the method the first preparatory step includes a first measurement step in which the effective transmission properties of the optically recordable layers before the recording of information on the layers is measured. The first step is followed by a second measurement step in which the effective transmission properties of the optically recordable layers, after the recording of information on the layers is measured is, followed by a comparison step. In the comparison step the measured effective transmission properties of the optically recordable layers before the recording of information on the layers is compared with measured effective transmission properties of the optically recordable layers after the recording of information on the layers. If no information is available about the change of the effective transmission properties of the optically recordable layers during recording onto these layers, this change can be measured in a plurality of measurement steps. For the write operations necessary to carry out these measurement steps it is possible to reserve for example a portion of the optically recordable information carrier.
In a variant of the method the first and the second optically recordable layers are inscribed successively, starting with the optically recordable layer situated farther from the laser light source and ending with the optically recordable layer situated nearer the laser light source if the effective transmission proper

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of recording a multi-layer optically recordable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of recording a multi-layer optically recordable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of recording a multi-layer optically recordable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060980

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.