Prodrugs for selective drug delivery

Organic compounds -- part of the class 532-570 series – Organic compounds – Azo

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S232000, C435S091500, C435S091500, C514S150000, C514S151000

Reexamination Certificate

active

06555663

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to therapeutic pharmaceutical agents which are activated intracellularly by reaction with cellular electron carriers or free radicals to cause release of a free and active drug molecule.
BACKGROUND OF THE INVENTION
The effects of the preponderance of drugs result from their interaction with functional macromolecular components of the organism. Such interaction alters the function of the pertinent cellular component and thereby initiates the series of biochemical and physiological changes that are characteristic of the response to the drug. The term receptor denotes the component of the organism with which the chemical agent interacts. There are fundamental corollaries to the statement that the receptor for a drug can be any functional macromolecular component of the organism. One is that a drug is potentially capable of altering the rate at which any bodily function proceeds; a second is that, by virtue of interactions with specific receptors, drugs do not create effects but merely modulate the rates of ongoing functions. A simple pharmacological dictum thus states that a drug cannot impart a new function to a cell. Functional changes due to a drug result from either enhancement or inhibition of the unperturbed rate. Furthermore, a drug that has no direct action can cause a functional change by competition for a binding site with another, active regulatory ligand of the receptor. Drugs are termed agonists when they cause effects as a result of direct alteration of the fundamental properties of the receptor with which they interact. Compounds that are themselves devoid of intrinsic pharmacological activity but cause effects by inhibition of the action of a specific agonist (eg. by competition for agonist binding sites) are designated as antagonists.
At least from a numerical standpoint, the proteins of the cell form the most important class of drug receptors. Obvious examples are the enzymes of crucial metabolic or regulatory pathways (eg., tyrosine hydroxylase; 3-hydroxy-3-methylglutaryl-CoA reductase), but of equal interest are proteins involved in transport processes (eg. Ca
2+
- ATPase; Na
+
- K
+
- ATPase) or those that are protein kinases which activate other proteins as a consequence of their binding a secondary messenger such as cAMP. Specific binding properties of other cellular constituents can be exploited. Thus, nucleic acids are important drug receptors, particularly for chemotherapeutic approaches to the control of malignancy, and plant lectins shown remarkable specificity for recognition of specific carbohydrate residues in polysaccharides and glycoproteins: Small ions such as Ca
2+
which can function as a regulatory ion or Fe
2+
which can serve as an essential enazmatic cofactor can be exploited as drug receptors. And, drugs can also produce a functional change by a nonreceptor-mediated action. Certain drugs that are structural analogues of normal biological constituents may be incorporated into cellular components and thereby alter their function. This has been termed a “counterfeit incorporation mechanism” and has been implemented with analogues of purines and pyrimidines that can be incorporated into nucleir acids and that have utility in cancer chemotherapy and that have antiviral activity. Also, specific constituents of pathogens can be exploited as receptors. For example, the electron carriers of bacterial can serve as receptors as described in my previous U.S. Patent Application Ser. No. 948,326, and the replicative enzymes of viruses can be serve as receptors as described below for the virus HIV. Many compounds are known which have receptor or nonreceptor mediated in vitro activity as appears in
Handbook of Enzyme Inhibitors,
Mahendra Kumor Jain, 1982, Wiley Interscience, New York, hereby incorporated by reference. However, only a small percentage produce the desired functional change in vivo or have a high therapeutic ratio because they are toxic in their free form; they are rapidly inactivated or excreted; or, they cannot obtain access to their target receptor or site of action because they are impermeant to cells or biological barriers such as the blood brain barrier due to unfavorable energetics due, for example, to the possession of polar or charge groups; or, they are toxic as a consequence of being nonselective with regards to their access to and action with receptors in one biological environment or compartment relative to another. In these cases, compounds which demonstrate in vitro efficacy are ineffective therapeutics.
SUMMARY OF THE INVENTION
A broad class of pharmaceutical agents is disclosed herein as the Luminide class of pharmaceuicals. Luminide agents are three part or four part molecules where each part is a functionality with a defined purpose. Exemplary Luminides are
where A represents a functionality which is activatable by the environment and capable of transferring energy from its own excited state to the B functionality which is an energy acceptor. Upon receiving energy from A, B achieves an excited state which relaxes through the heterolytic cleavage of the covalent bond of B with C where C is a drug moiety which is released into the intracellular compartment where activation of A occured. Released C can act locally or at a distant site. D serves as an electron transfer functionality which gains (loses) electrons from (to) the environment and donates (accepts) electrons to (from) A to activate it so that the energy of excited A is transferred to B with release of C as occurs for the three functionality case.
In both cases, free C is a drug molecule. The released drug molecule effects a therapeutic functional change by a mechanism which comprises receptor mediated mechanisms including reversible or irreversible competitve agonism or antagonism including a suicide substrate or transition state analogue mechanism or a noncompetitive or uncompetitve agonism or antagonism or the action is by a nonreceptor mediated mechanism including a “counterfeit incorporation mechanism”.
The chemical and physical properties of the Luminide agents such as permeance and reactivity to different oxidoreductase enzymes, electron carriers, or different free radicals including those of oxygen are exploited to control the environment into which C is released. Permeance of the Luminide agent to the blood brain barrier or cell membranes, or affinity of the Luminide agent to plasma proteins which results in a decreased excretion rate relative to free C, or lack of reactivity of extracellular enzymes with the Luminide agent relative to free C are exemplary mechanism where by Luminides provide for the release of active free C in the proper biological compartment or in the presence of the target receptor so that the desired therapeutic change is achieved. Thus, Luminides serve as therapeutic drugs. And, the present invention, Luminides, a broad class of pharmaceutical agents comprises antilipidemic drugs, anticholesterol drugs, contraceptive agents, anticoagulants, anti-inflamatory agents, immuno-suppressive drugs, antiarrhythmic agents, antineoplastic drugs, antihypertensive drugs, epinephrine blocking agents, cardiac inotropic drugs, antidepressant drugs, diuretics, antifungal agents, antibacterial drugs, anxiolytic agents, sedatives, muscle relaxants, anticonvulsants, agents for the treatment of ulcer disease, agents for the treatment of asthma and hypersensitivity reactions, antithroboembolic agents, agents for the treatment of muscular dystrophy, agents to effect a therapeutic abortion, agents for the treatment of anemia, agents to improve allograft survival, agents for the treatment of disorders of purine metabolism, agents for the treatment of ischemic heart disease, agents for the treatment of opiate withdrawal, agents which activate the effects of secondary messenger inositol triphosphate, agents to block spinal reflexes, and antiviral agents including a drug for the treatment of AIDS.
DETAILED DESCRIPTION OF THE INVENTION
Electron transferring and transporting elements ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Prodrugs for selective drug delivery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Prodrugs for selective drug delivery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prodrugs for selective drug delivery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3052527

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.