Active solid-state devices (e.g. – transistors – solid-state diode – Gate arrays – Having specific type of active device
Reexamination Certificate
2001-04-09
2003-03-18
Wilczewski, Mary (Department: 2822)
Active solid-state devices (e.g., transistors, solid-state diode
Gate arrays
Having specific type of active device
C257S211000, C257S369000, C438S153000
Reexamination Certificate
active
06534805
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to semiconductor memory device fabrication, and more particularly to an improved Static Random Access Memory (SRAM) cell design and method of manufacture.
2. Description of the Related Art
The proliferation of computers and other microprocessor-based devices has contributed to an increasing demand for semiconductor memory. Microprocessors are present not only in computers, but in a diverse range of products including automobiles, cellular telephones and kitchen appliances. A conventional microprocessor executes a sequence of instructions and processes information. Frequently, both the instructions and the information reside in semiconductor memory. Therefore, an increased requirement for memory has accompanied the microprocessor boom.
There are various types of semiconductor memory, including Read Only Memory (ROM) and Random Access Memory (RAM). ROM is typically used where instructions or data must not be modified, while RAM is used to store instructions or data which must not only be read, but modified. ROM is a form of non-volatile storage—i.e., the information stored in ROM persists even after power is removed from the memory. On the other hand, RAM storage is generally volatile, and must remain powered-up in order to preserve its contents.
A conventional semiconductor memory device stores information digitally, in the form of bits (i.e., binary digits). The memory is typically organized as a matrix of memory cells, each of which is capable of storing one bit. The cells of the memory matrix are accessed by wordlines and bitlines. Wordlines are typically associated with the rows of the memory matrix, and bitlines with the columns. Raising a wordline activates a given row; the bitlines are then used to read from or write to the corresponding cells in the currently active row. Memory cells are typically capable of assuming one of two voltage states (commonly described as “on” or “off”). Information is stored in the memory by setting each cell in the appropriate logic state. For example, to store a bit having the value 1 in a particular cell, one would set the state of that cell to “on;” similarly, a 0 would be stored by setting the cell to the “off” state. (Obviously, the association of “on” with 1 and “off” with 0 is arbitrary, and could be reversed.)
The two major types of semiconductor RAM, Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM), differ in the manner by which their cells represent the state of a bit. In an SRAM, each memory cell includes transistor-based circuitry that implements a bistable latch. A bistable latch relies on transistor gain and positive (i.e. reinforcing) feedback to guarantee that it can only assume one of two states—“on” or “off.” The latch is stable in either state (hence, the term “bistable”). It can be induced to change from one state to the other only through the application of an external stimulus; left undisturbed, it will remain in its original state indefinitely. This is just the sort of operation required for a memory circuit, since once a bit value has been written to the memory cell, it will be retained until it is deliberately changed.
In contrast to the SRAM, the memory cells of a DRAM employ a capacitor to store the “on”/“off” voltage state representing the bit. A transistor-based buffer drives the capacitor. The buffer quickly charges or discharges the capacitor to change the state of the memory cell, and is then disconnected. Ideally, the capacitor then holds the charge placed on it by the buffer and retains the stored voltage level.
DRAMs have at least two drawbacks compared to SRAMs. The first of these is that leakage currents within the semiconductor memory are unavoidable, and act to limit the length of time the memory cell capacitors can hold their charge. Consequently, DRAMs typically require a periodic refresh cycle to restore sagging capacitor voltage levels. Otherwise, the capacitive memory cells would not maintain their contents. Secondly, changing the state of a DRAM memory cell requires charging or discharging the cell capacitor. The time required to do this depends on the amount of current the transistor-based buffer can source or sink, but generally cannot be done as quickly as a bistable latch can change state. Therefore, DRAMs are typically slower than SRAMs. DRAMs offset these disadvantages by offering higher memory cell densities, since the capacitive memory cells are intrinsically smaller than the transistor-based cells of an SRAM.
As microprocessors have become more sophisticated, greater capacity and speed are demanded from the associated memory. SRAMs are widely used in applications where speed is of primary importance, such as cache memory supporting the Central Processing Unit (CPU) in a personal computer. Like most semiconductor devices, SRAMs are fabricated en masse on semiconductor wafers.
Fabrication of a metal-oxide-semiconductor (MOS) integrated circuit involves numerous processing steps. A gate dielectric, typically formed from silicon dioxide (“oxide”), is formed on a semiconductor substrate which is doped with either n-type or p-type impurities. Conductive regions and layers of the device may be isolated from one another by an interlevel dielectric. For each MOS field effect transistor (MOSFET) being formed, a gate conductor is formed over the gate dielectric, and dopant impurities are introduced into the substrate to form a source and drain. Frequently, the integrated circuit will employ a conducting layer to provide a local interconnect function as well. A pervasive trend in modern integrated circuit manufacture is to produce transistors that are as fast as possible and thus have feature sizes as small as possible. Many modern day processes employ features, such as gate conductors and interconnects, which have less than 1.0 &mgr;m critical dimension. As feature size decreases, the sizes of the resulting transistor and the interconnect between transistors also decrease. Fabrication of smaller transistors allows more transistors to be placed on a single monolithic substrate, thereby allowing relatively large circuit systems to be incorporated on a single, relatively small die area.
However, integrated circuits become increasingly difficult to manufacture as their dimensions are reduced. Integrated circuits with complex geometries may be particularly difficult to manufacture as dimensions are reduced. Consequently, integrated circuit designs without complex geometries are preferable. Further, reducing the number of steps in an integrated circuit's manufacturing process flow is desired. Reducing the number of processing steps often results in higher profits. Clearly, it would be desirable to have an improved circuit design and method of manufacture to facilitate fabrication of smaller and faster SRAMS.
SUMMARY OF THE INVENTION
The problems outlined above may be addressed by an improved circuit design and method of fabrication disclosed herein for an integrated circuit, specifically a semiconductor memory device. In the embodiments considered herein, the semiconductor memory device is a static random access memory (SRAM) device, but it is believed that principles disclosed herein are applicable to other types of integrated circuits as well. For example, any device requiring local interconnection of multiple active regions and gates may be suitable.
A memory cell is disclosed herein including a series of four substantially oblong parallel active regions. The active regions are arranged such that the inner active regions comprise source/drain regions for p-channel transistors, while the outer active regions comprise source/drain regions for n-channel transistors. Substantially oblong polysilicon structures may be arranged above and substantially perpendicular to the active regions. Substantially oblong local interconnects may also be arranged above and substantially perpendicular to the active regions. Each active region may include source/drain regions for no more than two transistors. Source/d
Conley & Rose & Tayon P.C.
Cypress Semiconductor Corp.
Daffer Kevin L.
Thomas Toniae M.
Wilczewski Mary
LandOfFree
SRAM cell design does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with SRAM cell design, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SRAM cell design will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3051010