Optically isotropic polycarbonate films and a method for the...

Plastic and nonmetallic article shaping or treating: processes – Mechanical shaping or molding to form or reform shaped article – Shaping against forming surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S337000, C264S211000, C264S211210, C264S211230, C264S176100, C428S212000, C428S220000, C428S412000, C428S480000

Reexamination Certificate

active

06613264

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to polycarbonate films with a high level of purity, that are high-gloss, optically isotropic on both sides, as well as to an economically efficient extrusion process for their production, and the use of the films according to the invention as cover films for optical data media, such as compact disks or DVD disks, for example.
The films according to the invention can also serve as carrier materials for the layer that carries the data, and in this way, extremely thin optical data media can be produced.
State of the Art
The demands made for sheets and films made of plastic, so that they are suitable for producing or covering optically readable data memory media, are generally known, see J. Hennig, Polymere als Substrate für optische Plattenspeicher [Polymers as substrates for optical disk memory media], Angew. Makromolekulare Chemie [Applied Macromolecular Chemistry], Volume 145/146, 1986 (page 391409). Furthermore, the sheets and films are not allowed to contain any foreign particles with a size of more than 10 micrometers, and no bubbles are allowed to form during processing. The double refraction resulting from shaping should be as low as possible.
Optical data media in the form of compact disks have been extensively produced using the injection-molding process, up to the present. Other processes that can also be used to produce optical data media with a larger size are based on plain sheets of plastic, which are subsequently provided with the layer that carries the data.
EP 461 485 (Röhm GmbH) describes an extruded plain sheet or film made of plastic and its production process. The polycarbonate melt is pressed out of a broad-slit die or an extruder at approximately 290° C., and calendered in a roller frame consisting of a high-gloss steel roller and a padded blanket roller. In this way, a polycarbonate film that is high-gloss on one side and matt on the other, with a thickness of 450 &mgr;m, is obtained.
EP 351 886 (Bayer AG) describes a casting process for the production of polycarbonate films. The polycarbonate, with an average molecular weight of 98,000, is dissolved in methylene chloride, and the solution is applied to a slowly rotating, heated, and polished cylinder, using a ductor device. In this way, a clear, transparent film with a thickness of 200 &mgr;m is obtained. A high degree of double refraction results, with a layer difference of &Dgr;G=74 nm. The polycarbonate films obtained in this way, which are not free of double refraction, are clamped in place and heated for 5 to 60 seconds, using a quartz heat emitter. This results in a reduction of the undesirable double refraction to values that are no longer a problem.
JP 07 126375 (Teijin Kasei Ltd.) describes the production of a film made of polycarbonate, with low double refraction. The low specific double refraction of the polycarbonate film is achieved by using a protective layer made of polyolefins.
Criticism of the State of the Art
Conventional methods for the production of thin, optically isotropic polycarbonate films function either on the basis of costly casting processes, in which complicated apparatus measures must be provided to prevent the emission of toxic organic solvents, or on the basis of complicated extrusion processes, in which either a polycarbonate film that is matte on one side, or an optically anisotropic polycarbonate film is produced in a first step.
These optically anisotropic extrusion films as last mentioned must be converted into optically isotropic extrusion films that are high-gloss on both sides, in subsequent steps. A two-stage extrusion process is extremely costly. The films are not provided with optimum surface properties, although they are optically somewhat isotropic.
Task
The invention was therefore based on the task of producing optically isotropic polycarbonate films that are high-gloss on both sides, while avoiding the economic disadvantages and the disadvantages of production technology that have been described for the state of the art. The films are supposed to be optically and mechanically isotropic, have a high level of surface quality, and possess the greatest possible optical purity.
Solution
Surprisingly, optically high-quality polycarbonate extrusion films in a thickness range<200 &mgr;m, preferably 15 to 150, especially preferably 30 to 100, particularly especially 60 to 90 &mgr;m, can be produced using the chill-roll process, with the profile of properties as described. To achieve the high level of optical purity, a polycarbonate injection-molding mass with a relatively low molecular weight is preferably used, such as that used for the production of injection-molded optical data media in large amounts.
The molecular weight M
w
of the polycarbonate molding mass used lies between 10,000 and 40,000, preferably between approximately 15,000 and approximately 20,000 (injection-molding mass). The injection-molding mass not intended for extrusion use, in particular, can surprisingly be extruded using the chill-roll process, at a high level of economic efficiency and while avoiding toxic solvents, to produce films with the required profile of properties (see FIG.
1
).
Implementation of the Invention
A significant element for the invention is the use of the melt-casting process, also called chill-roll process. In this process, the melt film that exits from the die is applied to a cooling roller (chill roll) and cooled as this happens. This makes it possible to produce extremely thin films (down to 15 &mgr;m) with a low level of optical anisotropism (almost isotropic films).
Almost isotropic is understood to mean that a beam of light penetrating the film medium undergoes only a deflection that is so low that it can be ignored, e.g. a layer difference of at most 50 nm, preferably at most 35 nm, especially preferably at most 25 nm.
The processing temperature for the polycarbonate molding mass lies between 210 and 260, preferably 220 to 240° C.
In order to avoid crystallite deposits in the die, it is advantageous to start the extrusion system at a processing temperature of 250 to 260° C. To achieve the lowest possible degree of gel body formation, the processing temperature can be successively reduced to 220 to 240° C. after the start-up phase of about 10 minutes to about 1 hour.
To avoid die lines or extrusion stripes on the extruded film, it is recommended to polish the internal extrusion die surface, where it is advantageous if this surface is chrome-plated, particularly the lip region. For the extrusion die lip region, the peak-to-valley height R
A
according to DIN 4768 should be 0.025 to 0.002, preferably 0.015 to 0.002, especially preferably 0.01 to 0.002. It is advantageous if the roughness of the distribution channel is at most 0.1.
Another improvement in quality, particularly the avoidance of die lines or extrusion stripes, of the extruded film can be achieved if the internal surface of the extrusion die is provided with an agent that repels polycarbonate melt. This can be done by coating the cleaned internal die surface with such an agent, for example silicone oil. The agent should not increase the peak-to-valley height as a whole, or not increase it significantly, but preferably it should reduce this height.
Another factor that can influence the quality of the extruded polycarbonate film is slight contamination of the polycarbonate melt. It is therefore advantageous to install a melt filter between the extrusion cylinder and the extrusion die. The mesh size of the filter insert should be 5 to 50 &mgr;m.
Another measure that can contribute to high-quality polycarbonate films is mixing a lubricant into the molding mass formulation. Usual amounts are between 0.01 and 1 wt.-% with reference to the molding mass. Examples for suitable lubricants are partially oxidized polyethylene, pentaerythrite stearate, or C
10
to C
20
fatty acid esters.
A high level of optical purity as well as a high level of optical isotropism are the significant basic requirements for the use of films in the stated appl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optically isotropic polycarbonate films and a method for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optically isotropic polycarbonate films and a method for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optically isotropic polycarbonate films and a method for the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049585

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.