Ultrasound transceiver system for remote operation through a...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S314000, C310S317000, C367S117000, C367S121000, C367S122000

Reexamination Certificate

active

06540677

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention, relates to high resolution ultrasound imaging of small structures at high frequencies, typically above 5 MHz, where the ultrasound transducer or transducer array is brought close to the structure to be imaged through channels with limited space for cable wires connecting the ultrasound transducer(s) and the ultrasound imaging or measurement instrument.
Examples of such applications are intravascular ultrasound imaging (IVUS) of a vessel wall from a transducer at the tip of a catheter, intraurether imaging of the prostate, or high resolution imaging of tumors and small vessels during minimal invasive or other surgery through narrow channels. The invention presents solutions with particularly high signal to noise ratio of the measured back scattered signal, with high inertness to electromagnetic interference from external sources, in such situations.
More specific, the invention relates to a design of preamplifier electronics, circuits for acoustic beam forming with ultrasound transducer arrays, ultrasound transducer arrays, and combinations thereof, that allows the electronics and transducer(s) to be integrated with short distance in a compact assembly, that can be operated from an ultrasound imaging or measurement system with a small number of electric wires, down to a two-wire cable.
The invention also has applications for obtaining maximal signal to noise ratio and inertness to electromagnetic interference with high frequency ultrasound imaging of structures with simpler access, such as high resolution skin or eye imaging (f~20-100 MHz).
It further has applications with lower frequency imaging and measurements for transducer arrays with small elements with high electric impedance, to improve the signal to noise ratio and the inertness to electromagnetic interference in these cases. It also has applications for switched elevation focusing with linear arrays, to reduce the number of wires connecting to the instrument, for easier manual operation of the transducer array.
2. Description of the Related Art
The spatial resolution with ultrasound echo imaging systems is a couple of ultrasound wavelengths large. The ultrasound wavelength, &lgr;, is related to the ultrasound frequency, f, as &lgr;=c/f, where c~1540 &mgr;m/&mgr;s is the propagation velocity of ultrasound in the tissue. To obtain a low wavelength, and hence a sharp resolution, one must therefore use a high ultrasound frequency. However, the image depth with ultrasound echo imaging is limited by absorption of ultrasound energy in the tissue. As the absorption increases with frequency, this sets an upper limit on the frequency that can be used for a given image depth. The image resolution is therefore limited by the image depth.
For imaging of small structures like the vessel wall, or other small structures of internal organs, it is therefore necessary to bring the ultrasound transducer close to the structure, so that the image depth, and hence the absorption attenuation of the ultrasound, is limited. With image depths less than 10 mm, it is possible to use ultrasound frequencies in the 20-100 MHz range, with wave lengths ranging from 75 to 15 &mgr;m. This gives spatial resolution in the range of around 150 &mgr;m to 30 &mgr;m, depending on the transducer frequency, bandwidth, and aperture.
The ultrasound transducer can be brought close to internal structures in the body, like the vessel wall or other organs, by mounting the transducer structure at the tip of a catheter or other elongated devices, that are inserted into the body through an incisure or natural body openings. A cable then connects the transducer at the tip of the extended probe and the ultrasound imaging or measurement instrument. The use of such high frequencies with transducers that has a distance to the imaging instrument then introduces practical problems, as:
1. With ultrasound frequencies above 30 MHz, impedance mismatch between the transducer and the cable connecting to the imaging instrument introduces losses that limits the signal to noise ratio and hence the maximal image depth at a given frequency. The limited thickness of the insertion instrument also limits the thickness of the wires that connects the transducer and the imaging instrument giving additional absorption and reduced imaging sensitivity.
2. At for example 35 MHz, the electromagnetic wavelength in the cable is ~6 m, giving a quarter wavelength of ~1.5 m that is approximately the length of a typical catheter. The catheter hence becomes similar to a quarter wave tuned antenna in the ultrasound receiver frequency range, and the imaging system becomes very sensitive to external electromagnetic interference (EMI) sources in the active receiver frequency range.
3. Other problems in using a thin cable between the ultrasound transducer and the instrument is related to obtaining narrow ultrasound beams. To reduce the effect of ultrasound wave diffraction in the beam focus, and hence reduce the focal diameter, one must have a large number of wavelengths across the active transducer aperture (typically ~50 wavelengths across the aperture are wanted). However, with such low diffraction focusing, the depth of the focus is reduced, limiting the range of sharp focusing and spatial resolution.
The standard solution to this problem for the receive beam, is to use an array of transducer elements with dynamic focusing where the receive beam focus follows the depth where the echoes are received from at any time. An electronically steered dynamic focus is obtained by adding delays to each array element signal, so that the total of this delay and the propagation delay from the focus to the element, is close to the same for all elements. The added delay can be obtained with acoustic or electronic delay lines, or a combination of both. One also wants to increase the active transducer transmit aperture with image depth, in order to limit expansion of the focal diameter with depth.
4. For pulse transmission one must select a fixed transmit beam focus, as one cannot change the pulse after it is transmitted. It is then desirable to be able to select between different transmit focus depths so that one can focus the transmit beam to the most important image range. A kind of dynamic focus for the transmit beam can be obtained by composing the whole image range of sub ranges where each sub range is imaged with separate transmit pulses focused within the sub range. One also wants to increase the active transducer transmit aperture with image depth, in order to limit expansion of the focal diameter with depth.
Hence, it is desirable to have a transducer array at the distal end of the insertion device that operates with a high signal to noise ratio with large immunity to electromagnetic interference, the array having dynamic or switchable receive focusing and expanding receive aperture, switchable transmit focusing and expanding transmit aperture, that can be operated from the ultrasound imaging or measurement instrument via a minimal number of wires, minimizing the cross section of the device to be inserted into narrow structures.
SUMMARY OF THE INVENTION
The invention devices a solution to these problems by mounting electronic circuits close to the ultrasound transducer or transducer array, where the circuits have the ability to be operated through a few wires, down to a two-wire cable.
In its simplest form, the invention provides a preamplifier that can be operated through a two wire cable that provides the DC bias voltage to the amplifier. When a high voltage pulse is transmitted via the wire, a breakthrough circuit connects the wire to the transducer for transmit of the ultrasound pulse, while in receive mode, the low level signal on the transducer is amplified and fed as a higher level signal via the same wire to the imaging or measurement instrument. As the receive signal level is raised on the cable, the system is less sensitive to cable losses and external electromagnetic interference, hence maximizing the sensitivity of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasound transceiver system for remote operation through a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasound transceiver system for remote operation through a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasound transceiver system for remote operation through a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3048923

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.