Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond
Reexamination Certificate
2001-01-26
2003-01-07
Hess, Bruce H. (Department: 1774)
Stock material or miscellaneous articles
Structurally defined web or sheet
Discontinuous or differential coating, impregnation or bond
C347S105000
Reexamination Certificate
active
06503608
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
Reference is made to commonly assigned, co-pending U.S. Patent Applications:
Ser. No. 09/770,814 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Recording Element”;
Ser. No. 09/771,191 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Recording Element”;
Ser. No. 09/770,429 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Recording Element”;
Ser. No. 09/770,782 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Recording Element”;
Ser. No. 09/771,189 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/770,433 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/770,807 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/770,728 by Bermel et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/770,128 by Lawrence et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/770,781 by Lawrence et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/771,251 by Lawrence et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/770,122 by Lawrence et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”;
Ser. No. 09/772,097 by Lawrence et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”; and
Ser. No. 09/770,431 by Lawrence et al., filed Jan. 26, 2001 entitled “Ink Jet Printing Method”.
FIELD OF THE INVENTION
This invention relates to an inkjet printing method for improving the light stability, waterfastness and density of a printed image containing an ink jet ink containing a water-soluble anionic dye and a cationic receiver.
BACKGROUND OF THE INVENTION
Ink jet printing is a non-impact method for producing images by the deposition of ink droplets in a pixel-by-pixel manner to an image-recording element in response to digital signals. There are various methods which may be utilized to control the deposition of ink droplets on the image-recording element to yield the desired image. In one process, known as continuous ink jet, a continuous stream of droplets is charged and deflected in an imagewise manner onto the surface of the image-recording element, while unimaged droplets are caught and returned to an ink sump. In another process, known as drop-on-demand ink jet, individual ink droplets are projected as needed onto the image-recording element to form the desired image. Common methods of controlling the projection of ink droplets in drop-on-demand printing include piezoelectric transducers and thermal bubble formation. Ink jet printers have found broad applications across markets ranging from industrial labeling to short run printing to desktop document and pictorial imaging.
The inks used in the various inkjet printers can be classified as either dye-based or pigment-based. A dye is a colorant which is molecularly dispersed or solvated by a carrier medium. The carrier medium can be a liquid or a solid at room temperature. A commonly used carrier medium is water or a mixture of water and organic co-solvents. Each individual dye molecule is surrounded by molecules of the carrier medium. In dye-based inks, no particles are observable under the microscope. Although there have been many recent advances in the art of dye-based inkjet inks, such inks still suffer from deficiencies such as low optical densities on plain paper and poor light-fastness. When water is used as the carrier medium, such inks also generally suffer from poor water-fastness.
An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer. The ink-receiving layer may be a polymer layer which swells to absorb the ink or a porous layer which imbibes the ink via capillary action.
Ink jet prints, prepared by printing onto ink jet recording elements, are subject to environmental degradation. They are especially vulnerable to water smearing, dye bleeding, coalescence and light fade. For example, since ink jet dyes are water-soluble, they can migrate from their location in the image layer when water comes in contact with the receiver after imaging. Highly swellable hydrophilic layers can take an undesirably long time to dry, slowing printing speed, and will dissolve when left in contact with water, destroying printed images. Porous layers speed the absorption of the ink vehicle, but often suffer from insufficient gloss and severe light fade.
U.S. Pat. No. 5,939,469 discloses a composition suitable for ink jet printing comprising a vinylimidazole selected from the group consisting of N-vinylimidazole and 2-methyl-1-vinylimidazole and a crosslinker. However, there is a problem with this composition, in that they do not have as good waterfastness.
U.S. Pat. No. 6,045,917 relates to the use of poly(N-vinyl benzyl-N,N,N-trimethyl ammonium chloride-co-ethyleneglycol dimethacrylate) in an ink jet image-recording layer. However, there is a problem in that images formed in the image-receiving layer of this composition have poor light stability, as will be shown hereafter.
It is an object of this invention to provide an ink jet printing method using anionic dyes suitable for use in aqueous inks for inkjet printing that will provide images with better light stability, waterfastness and density using certain receiver elements.
SUMMARY OF THE INVENTION
This and other objects are achieved in accordance with this invention which relates to an inkjet printing method, comprising the steps of:
A) providing an inkjet printer that is responsive to digital data signals;
B) loading the printer with ink-receptive elements comprising a support having thereon an image-receiving layer comprising a cationic, water-dispersible, quaternized imidazole-containing polymer;
C) loading said printer with an ink jet ink composition comprising water, a humectant, and a water-soluble anionic dye; and
D) printing on the image receiving layer using the ink jet ink in response to the digital data signals.
It has been found that use of the above dyes and image-receiving layer provides excellent light stability, waterfastness and density.
DETAILED DESCRIPTION OF THE INVENTION
Any anionic, water-soluble dye may be used in composition employed in the method of the invention such as a dye having an anionic group, e.g., a sulfo group or a carboxylic group. The anionic, water-soluble dye may be any acid dye, direct dye or reactive dye listed in the COLOR INDEX but is not limited thereto. Metallized and non-metallized azo dyes may also be used as disclosed in U.S. Pat. No. 5,482,545, the disclosure of which is incorporated herein by reference. Other dyes which may be used are found in EP 802246-A1 and JP 09/202043, the disclosures of which are incorporated herein by reference. In a preferred embodiment, the anionic, water-soluble dye which may be used in the composition employed in the method of the invention is a metallized azo dye, a non-metallized azo dye, a xanthene dye, a metallophthalocyanine dye or a sulfur dye. Mixtures of these dyes may also be used. An example of an anionic dye which may be used in the invention is as follows:
The dyes described above may be employed in any amount effective for the intended purpose. In general, good results have been obtained when the dye is present in an amount of from about 0.2 to about 5% by weight of the ink jet ink composition, preferably from about 0.3 to about 3% by weight. Dye mixtures may also be used.
In a preferred embodiment of the invention, the cationic, water-dispersible, quaternized imidazole-containing polymer has the formula:
wherein:
each A independently represents C(O)O, C(O)NH, OC(O), NHC(O), or a direct link, i.e., a bond;
each B independently represents O, NH or a direct link, i.e., abond;
each R
1
independently represents H or CH
3
;
each R
2
independently represents a linear, branched or cyclic alkyl, alkoxy or aryl group having from 1 to about 10 carbon atoms, or a direct link, i.e., a bond;
R
3
represents a substituted or unsubstituted imidazole group;
R
4
represents a
Lawrence Kristine B.
Teegarden David M.
Cole Harold E.
Hess Bruce H.
LandOfFree
Ink jet printing method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink jet printing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink jet printing method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048239