Coded data generation or conversion – Bodily actuated code generator
Reexamination Certificate
2000-03-24
2003-04-29
Edwards, Timothy (Department: 2635)
Coded data generation or conversion
Bodily actuated code generator
C345S163000
Reexamination Certificate
active
06556150
ABSTRACT:
TECHNICAL FIELD
This invention relates to an ergonomically designed computer input device. More specifically, the invention relates to an ergonomically designed computer input device for supporting the hand of a user and having a user-manipulable movable ball.
BACKGROUND OF THE INVENTION
Computer input devices for entering commands into a computer are well known and currently available in a variety of configurations. Many such input devices take the form of a mouse or a trackball device. The term “mouse” is commonly used to refer to a computer input mouse design having a tracking system such as a lower mounted ball or an optical tracking system, for determining the relative movement between the mouse and a surface upon which it rests. The term “trackball device” is commonly used to refer to a computer input device having a body and a rotatable ball coupled to the body for direct manual engagement by a user when the trackball device is resting on a supporting surface. Both the mouse and the trackball device can control the cursor on a computer screen.
A mouse frequently includes a rotatable ball mounted to the bottom of a housing. When the mouse is moved over a supporting surface, encoders sense the movement of the ball and generate signals indicative of the direction and amount of that movement. The signals are supplied to a computer and used, for example, to control movement of a cursor on the screen of the computer. The cursor on the computer screen would then be moved in a direction and by an amount corresponding to the movement of the ball. In another arrangement for the mouse, an optical tracking system is used in lieu of the mechanical ball tracking system to measure movement of the mouse with respect to the supporting surface.
A trackball-type input device, on the other hand, has its rotatable ball exposed for manipulation by the user's finger(s) and/or thumb. Ball-movement signals are generated, similar to those described with a mouse, and a cursor on the computer screen is moved in a direction and by an amount corresponding to the movement of the ball. The rotatable ball may be sensed by any conventional mechanical or optical sensing system or any other desired technique. For example, if a mechanical sensing system is used, the ball may be supported on a pair of perpendicular rollers. If an optical sensing system is used, a light source may be reflected off of a portion of the ball, and an optical sensor may determine the relative movement of the ball.
Computer input devices, including the mouse and the trackball device, may also include one or more buttons and/or a wheel. Typically, depressing one of the buttons changes the state of an associated switch, which permits a user to enter various commands into the computer. The nature of the command usually depends upon the position of the cursor on the screen. A roller or wheel typically protrudes from the top of the device and is coupled to an encoder for producing a signal indicating the rotation of the wheel. That signal may be used, for example, for scrolling through a window displayed on the computer, which function was heretofore performed by moving the cursor to the window “scroll bar” and depressing a button as needed to scroll through whatever is displayed in the window. For convenience, the wheel will hereafter be referred to as a “scrolling wheel.” The buttons, trackball, and scrolling wheel may be collectively referred to as the actuators carried on the input device.
Irrespective of the type of input device employed, mouse or trackball, it is advantageous that the device be comfortable for the user to operate, especially over long periods of time. Such comfort is obtained by careful attention to ergonomic factors, particularly toward minimizing stress in the user's fingers, wrist, and forearm. Providing a comfortable computer input device can be especially challenging when one's design goal includes enhancing the function of the device over prior devices. Particularly, prior art finger-controlled trackball devices include drawbacks relating to comfort and/or functionality preventing optimal usability. For example, existing trackball devices do not adequately support the user's thumb without restricting its motion. Accordingly, an improved ergonomic computer input device was thus needed that overcomes drawbacks of existing designs. More specifically, an improved ergonomic finger-controlled trackball device that maximizes comfort and functionality was thus needed.
SUMMARY OF THE INVENTION
In view of the foregoing, the present invention provides an improved computer input device that eliminates the drawbacks of the prior art.
The present invention also provides a computer input device that effectively supports the hand enabling comfortable and efficient activation of various actuators positioned on the housing by the user.
The present invention provides an ergonomic finger-controlled trackball device. The device includes a housing having an asymmetrical dividing ridge forming a thumb-side, for placement of the thumb, and a finger-side, for placement of the remaining four fingers. The finger-side surface includes a ball rotatively mounted in the housing and further includes first and second input buttons disposed on the side of the ball which may be used as “forward” and “back” buttons. The thumb-side surface includes a horizontally-disposed scrolling wheel and third and fourth buttons on opposite sides of the scrolling wheel that can be used as “primary” and “secondary” buttons.
According to one aspect, the invention includes a computer input device having a housing and an actuator. The housing includes a thumb side adapted for interfacing with a thumb of a hand of a user and a finger side adapted for interfacing with a plurality of fingers of the hand of the user. The actuator includes a wheel positioned on the thumb side enabling its manipulation by the thumb of the user.
According to one aspect, the invention includes a computer input device having a housing and an actuator. The housing includes a bottom supporting surface adapted to interface with a planar work surface. The actuator includes a wheel mounted for movement in a plane substantially parallel to the work surface.
According to another aspect, the finger-side of the housing has a ball actuator and the thumb-side of the housing has a horizontally-disposed rotatable wheel that is rotatable by moving the thumb with a forward and back motion. Further, there are input buttons on opposite sides of the thumb wheel spanning from the top to the bottom of the thumb-side surface. This interrelationship enables the scrolling wheel to act as a locating divider between the two input buttons.
According to one aspect of the present invention, a method of providing input signals to a computer includes the steps of placing a thumb against a wheel rotatively mounted to a computer input device, and moving the thumb to rotate the wheel.
In yet another aspect of the invention, a computer input device has a housing and an actuator. The actuator includes a linearly slidable member coupled to the housing and being disposed for engagement by a user. Activation of this actuator causes the input device to send a signal to a computer to produce a command.
Another facet of the invention includes a computer input device having a housing, a first actuator, and a second actuator. The housing includes a thumb side adapted for interfacing with a thumb of the hand of a user and a finger side adapted for interfacing with a plurality of fingers of the hand of the user. The first actuator has a pivotally movable member coupled to the housing to be engaged by a user, and adapted to send a signal to a computer when activated. The second actuator includes a sphere for finger engagement mounted to the housing for rotational movement.
In another aspect of the invention, a computer input device has a housing and an actuator. The housing has a thumb side adapted for interfacing with a thumb of the hand of the user and a finger side adapted for interfacing with a plurality o
Jacobson Melissa S.
Jones Gregory G.
McLoone Hugh E.
Edwards Timothy
Microsoft Corporation
LandOfFree
Ergonomic computer input device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ergonomic computer input device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ergonomic computer input device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3046807