Plastic and nonmetallic article shaping or treating: processes – Direct application of fluid pressure differential to... – Producing multilayer work or article
Reexamination Certificate
2000-01-13
2003-09-16
Lee, Edmund H. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Direct application of fluid pressure differential to...
Producing multilayer work or article
C264S138000, C264S250000, C264S267000, C264S275000, C264S294000
Reexamination Certificate
active
06620371
ABSTRACT:
TECHNICAL FIELD
This invention relates to methods of manufacturing painted parts, and in particular to methods of manufacturing painted plastic parts adapted for use on motor vehicles such as air bag covers, side cladding, instrument panel cluster bezels, exterior bumpers, and the like, as well as related decorative badges and ornamentation that maybe applied thereto.
BACKGROUND ART
Typically, plastic parts are painted after they are molded. The painting process requires elaborate facilities and consequently necessitates large expenses. For instance, significant square footage of a factory must be dedicated to a clean room environment for the spraying of paint and clear coat and for the baking and curing of paint on components, such as those components used in the automotive industry, such as body panels, air bag covers, instrument panels and the like. Such parts may also include decorative badges and other emblems and ornamentation adapted to be mounted or applied to the components.
For example, conventional air bag covers used in conjunction with occupant restraint systems may sometimes include decorative badges or ornaments attached thereto which are either formed integrally with or separate from the air bag cover. Such badges may take the form of a logo or mark representing a vehicle make, model, manufacturer, or the like. These decorative badges are aesthetically pleasing and help to enhance the overall appearance of the interior of the automotive vehicle. Since many air bag covers move away from the steering column during inflation of the air bag, the associated decorative badge should be securely attached to the cover so that it does not come off during operation of the air bag.
Moreover, solvent-based paints have in recent years raised significant environmental concerns because of the volatile organic components which are emitted into the air during the application of such solvent-based paints. As a result, the evaporation of such solvents must be strictly monitored to satisfy environmental and safety regulations.
In addition, automotive components, especially interior automotive components and their badges and ornamentation, are strictly scrutinized following the painting process in order to match or conform the automotive component to the styling and aesthetic requirements of the associated interior trim product. Painting such automotive components following the molding process, raises quality concerns with respect to the color, consistency, and thickness of each individual paint application.
U.S. Pat. No. 4,902,557, the Rohrbacher reference discloses a method and apparatus for manufacturing a thermoplastic polyolefin composite useful as an exterior auto or truck body part.
U.S. Pat. No. 4,769,100, the Short reference, teaches a method of applying a carrier film pre-printed with metallic paint to an automobile body panel in a vacuum forming process.
U.S. Pat. Nos. 4,952,351 and 5,466,412, the Parker patents, teach a method of manufacturing an air bag cover for an inflatable air bag system including a bondable film carrier, which is painted after the film carrier is molded.
However, the prior art fails to provide a method of manufacturing a painted component, including a badge, ornament or other emblem, individually or attached to the painted component, wherein the step of painting the component and badge after molding is eliminated and further where the resulting component has the structural integrity both in terms of durability and strength to support varying applications.
DISCLOSURE OF INVENTION
An object of the present invention is to provide a method for manufacturing a painted component and attached ornamentation, or painted badge and ornament attached to a painted component, while addressing paint quality issues such as: drips, runs, spits, dry spray, light coverage, gloss, color match, contamination and paint adhesion.
Another object of the present invention is to provide a method for manufacturing a painted component having a badge formed therein and reducing molding scrap due to splay, flow marks and minor surface imperfections which can be completely covered. Yet still another object of the present invention is to provide a method of manufacturing a painted component with badge, such as a composite air bag cover, side cladding, and the like, as well as painted badges and ornamentation attached to painted components wherein the badges and components have increased durability.
Another object according to the present invention is to provide a component having a decorative badge formed securely and integrally therewith such that the badge is secure and stable during use and operation of the component, such as an air bag cover, as well as a method of making the same.
In carrying out the above objects and other objects according to the present invention, provided is a molded plastic component which has an integrally molded badge which is formed in an injection mold cavity which has a shape which defines the desired plastic component. The component includes a film sheet which has a top surface and a bottom surface which together define the molded plastic component and badge. The film sheet is selected from the group consisting of polyester, polyurethane and polycarbonate. The film sheet is vacuum molded to obtain a pre-form, and the pre-form is placed in the mold cavity. Also included is a thermoplastic elastomer which is injected into the mold cavity to form a structural carrier which is bonded to the bottom surface of the pre-form in order to form the molded plastic component.
Further, a method is provided for manufacturing a plastic component, and a painted badge or ornament adapted to be integrally molded with the plastic component. The method includes the steps of providing a film sheet having top and bottom surfaces; vacuum molding the film sheet and the mold cavity to obtain a pre-form; placing the pre-form in a mold cavity of an injection mold having a shape defining the desired plastic component; and injecting a thermoplastic elastomer into the mold cavity of the injection mold to generate a structural carrier for the pre-form, the generation of the structural carrier creating sufficient pressure and heat to bond the structural carrier to the bottom surface of the pre-form to form the molded laminate component.
In another embodiment according to the present invention, a method is provided for manufacturing a molded laminate automotive component. The method includes inserting a film sheet into a vacuum forming station to form the film sheet into a predetermined automotive component shape to create a formed film sheet having top and bottom surfaces, placing the formed film sheet in a mold cavity of an injection mold having a shape defining the automotive component, and injecting a thermoplastic elastomer into the mold cavity of the injection mold, such that the thermoplastic elastomer is in mating contact with the bottom surface of the formed film sheet, to generate a structural carrier for the formed film sheet, the generation of the structural carrier creating sufficient pressure and heat to bond the structural carrier to the bottom surface of the formed film sheet to form the molded laminate automotive component.
In still another embodiment, a method of manufacturing a molded laminate automotive component with integral badge portion includes inserting a film sheet into a vacuum forming station to form the film sheet into a predetermined component and badge shape to create a formed film sheet having top and bottom surfaces, the film sheet being selected from the group consisting of polyester, polyurethane and polycarbonate. the method also includes placing the formed film sheet in an injection mold cavity having a shape defining the automotive component with integral badge portion. The method further includes injecting a thermoplastic elastomer into the mold cavity such that the thermoplastic elastomer is in mating contact with the bottom surface of the formed film sheet, thereby generating a structural carrier for the formed film sheet. The generation o
Murar Jason T.
Preisler Darius J.
Winget Larry J.
Brooks & Kushman P.C.
Lee Edmund H.
Patent Holding Company
LandOfFree
Method of manufacturing an in-mold laminate component does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of manufacturing an in-mold laminate component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing an in-mold laminate component will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3043600