Method and apparatus providing improved position estimate...

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490

Reexamination Certificate

active

06570530

ABSTRACT:

BACKGROUND
1. Field
The present invention relates generally to location of a device, and more particularly to techniques for providing an improved (i.e., more accurate) estimate of the location of the device based on an initial coarse position estimate.
2. Background
A common means by which to locate a device is to determine the amount of time required for signals transmitted from multiple sources at known locations to reach a receiver within the device to be located. One system that provides signals from a plurality of transmitters of known locations is the well-known Global Positioning Satellite (GPS) system. Satellites in the GPS system are placed in precise orbits according to a GPS master plan. The position of the GPS satellites can be identified by a number of different sets of information, some more accurate than others.
GPS satellites transmit a set of information, referred to as “Almanac”, which includes less accurate information regarding the location of the satellites in the “constellation”. Ground stations continuously monitor the GPS satellites to observe their variations in orbit. Once the satellite positions have been measured, the information is relayed back to the satellites. The satellites then transmit another set of information, referred to as “Ephemeris”, which includes a higher accuracy version of the satellite orbits. Each satellite transmits the Almanac information for all satellites but the Ephemeris information only for itself.
A GPS receiver can receive and/or store an almanac that indicates where each of a number of satellites is located in the sky at a given time. A more accurate determination of the location of a GPS satellite can be made based on the Ephemeris and the time of day at which this information is available.
Both the Almanac and Ephemeris are valid for a limited amount of time. The Almanac information is considered to be accurate to approximately 3 kilometers for approximately one week from the time the Almanac is transmitted. The Ephemeris provides information regarding the satellite orbit with an accuracy of approximately 1 meter for approximately 2 hours. The error in both the Almanac and Ephemeris grows as the information ages. Accordingly, the location of the satellites based on this information is less and less accurate as the Almanac and Ephemeris age, unless updated information is received at appropriate intervals in time.
Without accurate information regarding the location of the satellites, the estimated location of a device, which may have been determined based on the receipt of signals transmitted from the satellites, may be inaccurate. Accurate information may be attained by receiving updates (continually or as necessary) from the satellites or from an alternative source. The alternative source may be a base station or position determining equipment (PDE) in a wireless communication system, either of which may have a GPS receiver capable of receiving the required information from the GPS satellites. However, valuable resources would be consumed for the device to be located to attain the information at regular intervals. In particular, power is required to transmit and receive the information, and bandwidth is required to transmit the information from a remote source to the device.
There is therefore a need in the art for techniques to accurately determine the position of a device with minimal expenditure of resources. This need is particularly acute when position determination is based on transmitters (e.g., GPS satellites) that move over time and when accurate locations of such transmitters are known only upon receiving updates from the transmitters or a source remote from the satellites and the device whose position is to be determined.
SUMMARY
Techniques to accurately determine the location of a receiver device based on an initial coarse position estimate, which may have been derived using less accurate information regarding the location of the transmitters (e.g., an old Almanac or old Ephemeris for the GPS satellites) are disclosed herein. In one embodiment of the disclosed method and apparatus, corrections to the coarse position estimate of a receiver device are made based on knowledge of: (1) information providing a relatively more accurate location of the transmitters; and (2) information providing a relatively less accurate location of the transmitters (e.g., the old Almanac and/or Ephemeris) used to derive the coarse position estimate. The corrections may be performed based on various correction algorithms, one of which is an iterative algorithm described in further detail below.
In accordance with one embodiment of the disclosed method and apparatus, a coarse position estimate for the device is received. The coarse position estimate may have been derived based on initial (less accurate) estimates of the position of a plurality of transmitters, such as GPS satellites. Revised (more accurate) position estimates for the transmitters are also received. The revised position estimate for the device is then initialized (e.g., to the coarse position estimate). An update vector is next computed based on the initial and revised position estimates for the device and the initial and revised position estimates for the transmitters. The revised position estimate for the device is then updated based on the update vector. The computation for the update vector and the updating of the revised position estimate for the device can be repeated a number of times (e.g., until the magnitude of the update vector is within a particular threshold) to achieve a more and more accurate estimate of the actual position of the device.
In accordance with one embodiment of the disclosed method and apparatus, the update vector is computed by performing the steps of: (1) calculating a set of measurements based on the revised position estimate for the device and the revised position estimates for the transmitters; (2) deriving an intermediate position estimate for the device based on the set of measurements and the initial position estimates for the transmitters; (3) determining a first geometry matrix based on the initial position estimates for the transmitters and the intermediate position estimate for the device; (4) determining a second geometry matrix based on the revised position estimates for the transmitters and the revised position estimate for the device; and (5) computing the update vector based on the intermediate and revised position estimates for the device and the first and second geometry matrices. These steps are described in further detail below.
The disclosed method and apparatus further provides other aspects, embodiments, and features, as described in further detail below.


REFERENCES:
patent: 5373298 (1994-12-01), Karouby
patent: 5444450 (1995-08-01), Olds et al.
patent: 5825328 (1998-10-01), Schipper et al.
patent: 6084544 (2000-07-01), Camp, Jr.
patent: 6104978 (2000-08-01), Harrison et al.
patent: 6225945 (2001-05-01), Loomis
patent: 6313787 (2001-11-01), King et al.
patent: 0065367 (2000-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus providing improved position estimate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus providing improved position estimate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus providing improved position estimate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3038820

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.