Diversion system and method

Static structures (e.g. – buildings) – Cover with surface water receiver at eave or valley – With separator; e.g. – strainer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06568132

ABSTRACT:

TECHNICAL FIELD
The present invention relates to rain and run-off collection and diversion systems and, in particular, to systems and methods for such systems that exhibit reduced debris accumulation.
BACKGROUND OF THE INVENTION
Diversion of rain from buildings is a well-known and beneficial practice. For centuries, architects and builders have understood the benefits of diverting rain to forestall erosion, maintain structural stability, and preserve vegetation. In recent decades, a multitude of systems have been developed to divert rain from structures and homes. Typically, such systems have been placed beneath or adjacent to the roofline to allow collection and diversion of rain accumulated from across the surface area of the structure roof. Such systems are sometimes called “gutter” systems.
Frequently, rain diversion systems employ gutters that are open channels to collect run-off from the roof. Diversion or gutter systems devised with open-channeled rain gutters tend to accumulate debris including sticks, leaves and other matter that is swept toward the gutter by the gravity-induced flow of water down the pitch of the roof. Such debris can cause malfunction of the system as well as significant problems with leakage and corrosion. Roof and structural rotting as well as erosion can be precipitated by the consequent accumulation of water without appropriate attendant diversion.
Consequently, a variety of gutter systems of varying complexity have been developed to inhibit debris accumulation in gutter systems. Simple systems have merely placed screens across open-faced gutter channels. These techniques commonly have their own debris accumulation problems. Other systems employ a deflector described by various terms such as “hood” or “shield” that deflect debris while the gutter accumulates water for diversion to determined locations. For example, in U.S. Pat. No. 4,757,649 to Vahldieck, a system is described that purportedly preferentially collects water and deflects debris over a continuous double-curved shield through which a spike passes to affix the shield to a back support wall of the gutter. The use of shields and other deflectors is well known, and a variety of prior systems modify the shape of the deflector to purportedly take better advantage of the surface tension qualities of diverted run off. For example, in U.S. Pat. No. 4,404,775 to Demartini, a system of longitudinal ridges is imposed on a deflector and is said to improve adhesion of the water to the deflector to improve transference to the gutter.
Others have developed systems to support debris deflectors or affix the deflector to the gutter. For example, in U.S. Pat. No. 4,497,146 to Demartini, a rain deflector support is described that purports to support the underside of a rain gutter deflector while positioning the deflector in relation to the gutter.
As diversions systems have become more complicated, so have the associated issues of cost, specialized material stock, and installation efficiency become more unwieldy. For example, most systems that employ a deflector affix the deflector with screws or clips that reduce flexibility of the system or add an extra part (in addition to the hanger) to the assembly. If the deflector cannot be easily unfastened from the gutter, repair and maintenance are complicated.
For a variety of reasons, diversion systems that deflect debris have not been adopted as widely as demand would suggest. There are a variety of reasons for this result. One reason for the minimal market penetration is the use of non-standard widths of metal stock or “coil” for the gutter trough above which the deflector is positioned. Non-standard coil sizes add significantly to the cost and availability of such systems.
There are two principal sizes of coil used to form the gutter channels known in the art as “troughs.” For the widely found five inch-wide (5″) gutter troughs, standard coil material of 11 and ⅞ inches (11⅞″) is employed (except in the Northeastern U.S. where 5″ gutter troughs are formed from 11 and ¾ inch (11¾″) stock). For the less widely found, but still common, six inch (6″) trough, fifteen inch (15″) coil is used.
In almost all deflection systems, when installed, a deflector must be inclined by a degree sufficient to impart velocity to the run-off great enough to impel debris from the deflector. This requires that the back of the trough, proximal to which the deflector is attached, be high enough to provide sufficient incline for the deflector. Debris deflection systems for 5″ trough gutters employ non-standard coil for the gutter as a result of taking material from the front of the trough to raise the back wall of the gutter. With known designs, if standard width coil of 11⅞ inches were used to form the trough, the shift of material around the standard trough form factor (as employed in the art to create the “OG” 5 inch gutter) from the front trough channel containment wall to the back wall of the trough to provide sufficient deflector inclination leaves insufficient material for the front This process takes, however, material from the front border area of the trough to create the stiffening front channel edge that provides installation stability and standard hanger affixation capability.
The shape of the front of the gutter trough contributes to structural stability and, in some systems, provides an interface for hanger or deflector attachment. In particular, the shape of the border area of the gutter trough can significantly affect gutter stability during installation, an important consideration in any gutter system. Typically, lengths of gutter trough are formed in runs approximately 40 feet long. Without sufficient resistance to deformation, the gutter trough may fold or crease, particularly when being moved during installation, thus limiting run lengths and increasing installation difficulty. Consequently, 5″ gutter troughs with debris deflectors have typically used coil wider than 11⅞″ or 11¾″ for gutter formation to provide material sufficient to provide a stabilizing front gutter channel configuration with a raised back gutter trough wall to accommodate appropriate inclination of the deflector. Consequently, because of the higher cost of non-standard material, in particular, deflector-fitted 5″ trough gutter systems have cost significantly more than open-faced 5″ trough gutter systems crafted from standard sized coil material.
Previous system design, whether with 5″ or 6″ gutter troughs, has also contributed to unwieldy installation techniques, further increasing the expense of diversion systems that employ deflection hoods or shields. Some deflection systems form the trough and deflector from one piece of material. More commonly, the trough and deflector are separately formed and joined in place at the structure roof edge. Typically, two forming machines are employed during installation of a two-piece deflection system. One machine is dedicated to gutter trough formation, while the other is configured to form the deflector. The machines are typically placed side-by-side. The installation team typically first forms trough lengths sufficient to gutter the structure. The troughs are then affixed in place on the structure. After the troughs are fastened to the building, corresponding deflectors are formed and affixed to the in-place troughs. This process requires multiple trips to and from the forming machines as well as at least two trips up a ladder to install separately, the two large pieces of the system. The described process requires dexterity which, even if applied, cannot ameliorate the difficulty of moving long lengths of deflector that lack structural rigidity unless affixed to, and combined with, the gutter trough.
The inflexible nature of the affixation between hood and trough in prior systems results in several shortcomings. Replacement of deflector sections is made difficult by the inflexible nature of the affixation between deflec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diversion system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diversion system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diversion system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3038191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.