Medical therapy apparatus and sensor for acquiring...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S309000

Reexamination Certificate

active

06571129

ABSTRACT:

The invention concerns a sensor for obtaining information about the state of an organism for a medical therapy apparatus, preferably for a therapy apparatus for the electrostimulation or other treatment of the heart.
Sensors of that kind are known from the state of the art. The items of information which are detected thereby are required by the medical therapy apparatuses in order to be able to operate in the optimum fashion. Thus for example sensors for therapy apparatuses for electrostimulation of the heart, in particular sensors for cardiac pacemakers or for defibrillators, detect cardiac disrhythmias, but sensors of electromedical apparatuses can also measure muscle activity, lung function parameters, oxygen saturation, blood pressure, hormone level or other physiological parameters. All those parameters can be used for controlling the pacemaker or the defibrillator.
In that respect, particularly in the case of cardiac pacemakers, it is important for the stimulation pulse produced by the pacemaker to be matched in terms of its stimulation amplitude to the stimulation threshold. The stimulation threshold characterises that stimulation amplitude of the pacemaker, which is required in order to trigger a stimulation outcome, that is to say a stimulated systole. As the stimulation threshold can vary as a consequence of hormone level, time of day, physical activity and so forth, it is advantageous if the stimulation amplitude can be adapted to that variation in the stimulation threshold. In that respect, the stimulation outcome itself can also be used for controlling the pacemaker. For, if for example the absence of a stimulation outcome after the delivery of a stimulation pulse (as a result of the absence of a rise in impedance in the impedance pattern after delivery of the stimulation pulse) means that a sub-threshold stimulation situation is detected by a suitable sensor, then the stimulation amplitude is to be increased in order to further ensure reliable functioning of the pacemaker. To sum up it can be noted that, in the case of electromedical therapy apparatuses, particularly in the case of cardiac pacemakers and defibrillators, optimisation of the function of the apparatus is all the more possible, the greater the number of parameters involved in control or regulation of the apparatus.
Therefore the object of the present invention is to so develop a sensor of the kind set forth in the opening part of this specification, that additional parameters which were hitherto not detected in the state of the art can be detected.
In a sensor of the kind set forth in the opening part of this specification, that object is attained in that there is provided at least one sensor element for detecting molecular-genetic information.
In addition the invention provides a medical therapy apparatus, in particular a cardiac pacemaker or a defibrillator, which has a sensor of that kind.
The advantages of the invention are in particular that detection of molecular-genetic information means that a further parameter is available, for controlling a medical therapy apparatus. A sensor of that kind, which like the therapy apparatus itself can be disposed inside or outside the body, can thus advantageously detect for example genetic defects which result in a change in the stimulation threshold in the case of pacemakers. In that way a medical therapy apparatus which is so equipped can also adapt the stimulation threshold to particularities of that kind which permanently prevail in the respective organism. The sensors according to the invention can be part of a therapy apparatus, in module-like fashion, so that they can be interchanged at any time or can also be subsequently added. The sensors according to the invention can however also be a fixed integral component part of a medical therapy apparatus.
Furthermore, by virtue of the invention, it is advantageously possible also to determine genetic or biological indicators, besides clinical indicators for cardiac disrhythmia phenomena or other malfunctions of the organism. In that way, by virtue of the invention, for example particular susceptibility on the part of the organism to cardiac disrhythmias or also for given kinds of cardiac disrhythmias can be determined or detected at an early stage. If such a sensor according to the invention is then part of a medical therapy apparatus, then having regard to such a genetic parameter it is possible to determine an indicator signal as a measurement in respect of an imminent event which is in need of therapy. Certain physiological states of the organism, which require treatment, can thus already be detected at the outset and thus the use of suitable therapy measures on the part of the therapy apparatus can be initiated or prepared.
In an advantageous embodiment of the invention the sensor element has at least one docking element, to which docking element molecules of the organism can be docked, wherein the docking specificity of the docking element is known. It is thus possible by means of such a docking element to ascertain whether given molecules are present in the organism. If in that respect the docking specificity of the docking element is for example so set that certain genetic defects which manifest themselves in certain molecules, of a specific configuration, in the organism, can be detected in that manner, then the sensor can detect that genetic effect and possibly signal same to a therapy apparatus. The therapy apparatus can then in turn—possibly after setting or enablement by the doctor—again initiate a suitable therapy measure or adapt the strength of the therapy measure to the detected genetic defect. In the case of cardiac pacemakers, in this connection the stimulation threshold can be raised or lowered according to the known effects of the detected genetic defect.
In order to detect the above-mentioned known molecules, the docking element itself can include a known molecule. Those known molecules are preferably synthetic oligonucleotides or PCR-generated cDNA fragments. By means of such oligonucleotides or cDNA it is possible to bind complementary DNA pieces of the organism to be investigated. As the oligonucleotides or cDNA fragments serving as docking elements are known, that means that the bound DNA piece is also known. The presence of a given DNA piece then makes it possible to infer back to a given state of the organism or a morbid change in the organism. In that way for example it is also possible to ascertain the presence or the amount of given enzymes in the organism. That can be helpful in terms of early detection of a cardiac infarct.
In a further preferred embodiment the sensor elements are preferably provided at least twice on the sensor. In that way random bindings of molecules to the docking elements can be recognised as being random and excluded in regard to evaluation of the measurement result.
In a particularly preferred feature the sensor according to the invention includes measuring elements which are preferably connected to each sensor element, which measuring elements detect hybridisation of a complementary molecule of the organism to the known molecule serving as the docking element. The measuring elements in that respect may be a current measuring element for measuring an electrical current produced by the hybridisation procedure, a fluorescence measuring element for detecting a fluorescence which is present due to hybridisation, a charge measuring element for detecting an electrical charge distribution altered by hybridisation, or a radiation measuring element for detecting radioactive radiation present due to hybridisation. If for example the arrangement involves a measuring element for detecting fluorescence, the DNA or RNA to be investigated in the organism is suitably provided with fluorescence markings. If a DNA or RNA marked in that way is hybridised with the complementary sequences on the sensor, that fluorescence and thus the hybridisation can be detected with the fluorescence measuring element.
In a particularly preferred embodiment of the present invention the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical therapy apparatus and sensor for acquiring... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical therapy apparatus and sensor for acquiring..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical therapy apparatus and sensor for acquiring... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034903

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.