Process for treating septage

Liquid purification or separation – Processes – Treatment by living organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S615000, C210S754000, C210S150000, C210S175000, C210S173000

Reexamination Certificate

active

06558550

ABSTRACT:

BACKGROUND
1. Technical Field
This invention relates to a process for treating septage whereby septage is defined as liquids, solids, and semi-solid contents of privies, chemical toilets, cesspools, septic tanks, holding tanks, dry pits, grease traps, grit traps, boat pump out stations, or other sewage waste receptacles. More specifically, the invention involves a process for removing pathogens from the septage and for controlling vector attraction while producing bio-solids that can be utilized as a fertilizer or other beneficial use such as soil conditioner. Additionally, the process allows for the removal of the majority of the water component of the septage and provides for its treatment and subsequent discharge into the environment.
2. Background of the Related Art
The proliferation of fast food restaurants and other large scale food processing centers, where food preparation inherently produces fats and grease waste, in conjunction with increasing regulations concerning the disposal of such wastes, have produced a need for an efficient process for its removal and processing in order to control cost and minimize harm to the environment.
Food, grease and oil are present in waste water produced from restaurants and other food processing establishments. This waste water containing fats, grease and oils forms an emulsion that passes through a grease trap, which is required by most local and state regulations, to capture components within the waste water preventing their release into municipal sewer systems or septic systems. Typically, the grease trap comprises an infall pipe, which discharges the water containing grease and food into an underground holding tank capable of retaining large quantities of this unwanted waste. These holding tanks contain barriers that trap and partially separate heavy solids, floating trash and much of the fats, oils and grease produced from food processing and preparation area drains. As a matter of design these grease traps become saturated with solids, trash, fats, oils and grease, and must be drained periodically per local and state health regulations. The draining of these grease traps is accomplished by a tanker truck having a vacuum pump that retrieves the contents of the grease trap for proper disposal.
The discharge of this concentrated wastewater containing solids, trash, fats, oils and grease into a conventional municipal wastewater treatment facility will either deteriorate the efficiency of that municipal facility or cause serve operational difficulties within the municipal wastewater system. In light of these difficulties, there is a reluctance of municipally owned wastewater treatment plants to accept septage and more particularly grease-trap wastes.
The evolution of greater regulatory requirements as to the disposal of these wastes has contributed to escalating costs associated with their proper disposal. Historically, this septage was disposed of by dumping or landfilling the waste after the removal of some of its aqueous components. Unfortunately, untreated septage, both in solid and liquid form, may contain any number of substances toxic to humans and the environment, including, solvents, organic and inorganic compounds and pathogens. The treatment of septage to destroy these pathogens and noxious compounds before placement within a landfill has become increasingly more important due to environmental concerns. Greater interests in the environmental impact of the disposal of septage and the resulting increase in regulatory requirements have caused escalating costs associated with the proper disposal of septage.
Different methods of treating septage have been implemented with varying degrees of success. One prior art method was to dump the septage into an open pit, where it was then mixed with ash and dirt forming a substantially dry material. This resulting dry material was then placed within a landfill. However, this method required valuable and costly landfill space and also had significant odor problems. Additionally, this virtually unprocessed method of treating septage has certain environmental concerns along with vector attraction.
Many newer approaches to septage treatment utilize labor, energy, intensive chemical and biological systems in order to process the septage so that it is suitable for discharge within the environment. Unfortunately, such processes are costly due to the cost of labor, energy and the expense associated with biological and chemical processes. Moreover, these processes often produce materials that are large in volume and have no practical use. Additionally, these chemical and biological treatments of septage can still have detrimental effects on the environment.
One of these methods utilizing chemical and biological treatment uses surfactants to break down fat globules contained within grease trap waste. Once the fats are broken down, microbes are used to ingest the fat particles. Unfortunately, this process is extremely cost prohibitive and labor intensive and has been met with limited success. Additionally, this method also suffers from significant odor problems and vector attraction. Most importantly, this method still requires a significant volume of landfill space.
Another method involves the heating of the waste to remove by skimming the fats contained within such waste. The solids within the waste are removed and the subsequent liquid waste is heated again to remove remaining pathogens. Unfortunately, this process is both labor intensive and costly from an energy standpoint due to the multiple heating of the waste product. Additionally, the removal of solids within such process produces a product that has no known use and is subsequently disposed within costly landfill sites. Furthermore, the solids produced from this process have not been treated for pathogens or vector attraction.
Several recent approaches have been developed to treat the sludge generated at municipal wastewater treatment plants. These processes treat the sludge with a selected alkaline additive such as lime. One method uses the exothermic reaction between the alkaline additive and the water contained in sludge to produce sufficient heat within the sludge to destroy existing pathogens. Another method uses less lime for the exothermic reaction but supplies supplemental heat to the sludge by electrical elements to attain the temperature required to destroy existing pathogens. Both processes use the elevated pH of the sludge caused by the lime addition to reduced vector attraction. Unfortunately, the energy and chemical. costs associated with these processes are extremely high. More importantly, the heating of sludge, a solid material, by the use of electrical elements or excess lime addition does not necessarily produce uniform heating throughout the sludge and subsequently contributes to pathogen reduction that is not predictable.
As a result of the deficiencies of prior art treatment methods in addressing landfill usage, energy costs and detrimental effects on the environmental, there is a need to provide a septage treatment process that has a low, if not beneficial, impact on the environment while being cost effective.
SUMMARY
The present invention is a waste processing facility specifically designed to process septage. Septage is the liquid, solid, and semi-solid contents of privies, chemical toilets, cesspools, septic tanks, holding tanks, dry pits, grit traps, boat pump out stations, grease traps or other sewage waste receptacles. The physical characteristics of septage vary widely. Septage has a percent solids concentration of generally 0 to 10% by volume. The processing facility is designed to handle approximately 100,000 gallons per day of septage during a 12-hour shift, although other varying amounts are contemplated herein. The inventive process will convert the septage to approximately 40 tons of Biosolids (sludge) having a composition of approximately 60% water. The inventive process addresses the following two considerations in the treatment of septage: pathogen reduction (e.g., helminthes (intestinal worms), b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for treating septage does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for treating septage, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for treating septage will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3031888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.