Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2002-05-02
2003-05-06
Lipman, Bernard (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C427S302000, C427S307000, C525S333800, C525S387000
Reexamination Certificate
active
06559242
ABSTRACT:
BACKGROUND OF INVENTION
1. Field of the Invention
The invention relates to a method of activating a surface of a thermoplastic olefin material utilizing an aqueous immersion bath employing a water-soluble peroxide compound and at least one transition metal capable of undergoing redox cycling and a thermoplastic olefin having a surface activated by the inventive method. The present invention also relates to a coating process in which a coating is applied to the activated thermoplastic olefin and a thermoplastic olefin having a coating applied thereto by the inventive method.
2. Background of the Invention
Thermoplastic olefin materials that otherwise have good properties for use in the automobile industry are difficult to apply a coating thereto because the surface of the thermoplastic olefin does not have any polar functional groups which are available to bond with a coating. In order to solve this problem, three different approaches have commonly been taken.
The first approach provides an intermediate adhesive between the thermoplastic olefin substrate and the subsequent coating. This approach has problems in that an adhesive and organic solvents are needed to coat the thermoplastic olefin material which results in the process being expensive, complicated and having an adverse impact on the environment.
The second approach involves the modification of the surface of the thermoplastic olefin by generating a plasma around the thermoplastic part. However, this procedure requires the use of complex equipment and extremely specialized training which results in the process being very expensive. Additionally, the treatment of the thermoplastic material may not be evenly applied due to the shape of the object to be treated.
A third approach uses a flame to oxidize the surface of the thermoplastic material. This procedure is inherently dangerous due to the hazards of an open flame being used and this process also may produce uneven treatment depending on the shape of the plastic object.
The use of a peroxide compound for removing contaminants from a surface and as a pretreatment of an epoxy substrate prior to the application of a metallic film thereon is well known. Sugio, U.S. Pat. No. 4,086,128, discloses a process for roughening the surface of an epoxy resin prior to the application of a metallic film thereon which comprises a step of etching the pretreated resin with an etching solution containing hydrogen peroxide and sulfuric acid to roughen the surface of the resin.
Tanimoto et al, U.S. Pat. No. 4,299,863, discloses the treatment of an epoxy resin substrate with a water-soluble peroxide compound before sensitizing the epoxy resin substrate for electroless copper plating.
Orban, U.S. Pat. No. 4,645,573, discloses a method for continuously and sequentially coating a polyester material with copper and silver which involves an etching step in hydrogen peroxide. Feringa et al, U.S. Pat. No. 5,580,485, discloses a catalytically active iron complex which can activate hydrogen peroxide or peroxy acids and is said to have both favorable stain removable and dye transfer inhibition properties. Cannon et al, U.S. Pat. No. 5,725,678, discloses an aqueous-based process for cleaning organic residues from industrial equipment which employs hydrogen peroxide and an iron salt as a catalyst or enhancer.
SUMMARY OF INVENTION
The present invention provides a method of activating a surface of a thermoplastic olefin material in which the thermoplastic olefin material is immersed in an aqueous bath containing a water-soluble peroxide compound and at least one transition metal salt. Another aspect of the present invention is directed to a thermoplastic olefin having its surface activated by an aqueous immersion bath containing the water-soluble peroxide compound and at least one transition metal salt. Still another aspect of the present invention is directed to a method of coating a thermoplastic olefin in which a coating is applied to the activated surface of the thermoplastic olefin and a still further aspect of the present invention is directed to a thermoplastic olefin having a coating provided on a surface thereof. The present invention is especially suitable for the application of a primer, a clear coat or a color coat onto the surface of the thermoplastic polyolefin.
DETAILED DESCRIPTION
In the present invention, an aqueous immersion bath is formed which primarily contains a water-soluble peroxide compound and at least one transition metal capable of undergoing redox cycling. Any water-soluble organic and inorganic peroxide compound is suitable for use in the present invention, such as hydrogen peroxide, sodium peroxyborate, sodium peroxycarbonate, ethyl hydroperoxide and peroxyacetic acid, with hydrogen peroxide being especially preferred for use in the present invention.
It is believed that the aqueous immersion bath of the present invention generates hydroxyl radicals which abstract hydrogen atoms from the surface of a thermoplastic olefin to form radical groups on the thermoplastic olefin surface which can react with oxygen or water and produce an oxidized surface which is more susceptible to bonding with a subsequent coating. The temperature of the aqueous immersion bath during the treatment of the plastic is preferably from about 20 to about 100° C. with the pH of the aqueous bath preferably being no greater than about 9.
The transition metal salt used in the present invention serves as a catalyst in the reaction of the water-soluble peroxide compound with the surface of the thermoplastic olefin material.
Since it is preferable that the transition metal in the salt cycle between oxidation states, a mixture of the lower and higher oxidation states of the transition metal can be present in solution. A mixture of transition metals that result in efficient redox cycling is preferred. Iron and copper are preferred transition metals used in the present invention. The anion of the transition metal salt can be chloride, sulfate, nitrate, carbonate, acetate, phosphate and any other anion which would allow the salt to provide the transition metal cation in the aqueous immersion bath and not materially interfere with the activation of the surface of the thermoplastic olefin. Ferrous sulfate or a mixture of ferrous sulfate and cupric sulfate are preferred in the present invention. Preferably, the water-soluble peroxide compound is present in the aqueous immersion bath in an amount of from 3 to 30 wt. % and the transition metal salt is present in an amount of from 0.05 to 0.5 grams per 100 milliliters of the aqueous immersion bath. Additional additives such as buffering agents for adjusting the pH of the aqueous immersion bath can be present so long as they do not interfere with the peroxide compound's reaction with the surface of the thermoplastic olefin.
Thermoplastic olefins used in the present invention include polyethylene, polypropylene, polybutylene and copolymers, blends and alloys thereof. Especially preferred are polypropylene, polyethylene and copolymers, blends and alloys thereof.
The time necessary for the thermoplastic olefin material to be immersed in the aqueous immersion bath of the present invention is dependent on factors such as the temperature of the aqueous immersion bath, the amount of water-soluble peroxide compound and transition metal salt(s) contained in the bath and the properties of the thermoplastic olefin material and a suitable time frame for obtaining the desired surface activation is readily obtainable to one of ordinary skill in the art. After the thermoplastic olefin has been immersed in the aqueous bath and its surface activated, it is removed, rinsed and dried. After drying, the coating can be applied to the surface of the plastic material by any conventional manner.
Many different types of coatings can be applied to the activated surface of the plastic material with primers, color coat and clear coat materials and adhesives being especially suitable for use in the present invention. Examples of clear coat materials usable in the present invention include acr
Ball James Charles
Young Willie C
Ford Global Technologies Inc.
Lipman Bernard
Porcari Damian
LandOfFree
Surface activation and coating processes of a thermoplastic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Surface activation and coating processes of a thermoplastic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface activation and coating processes of a thermoplastic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3027144