Vehicle interference prevention device

Data processing: vehicles – navigation – and relative location – Relative location – Collision avoidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06625540

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a vehicle interference prevention device for preventing vehicles from interfering with one another in situations where a plurality of vehicles are traveling over travel routes.
2. Description of the Related Art
At large work sites such as rock quarries and mining operations, control of a plurality of unmanned vehicles, such as unmanned dump trucks, used to perform operations such as hauling earth is typically accomplished through a vehicle monitoring system in which a monitoring station is set up as a base station, with all of the unmanned vehicles being managed and monitored by this monitoring station.
A Vehicle monitoring systems of this type known in the art include the systems disclosed in Japanese Patent Application Laid-Open No. 63-150710 (hereinbelow referred to as Citation 1) and Japanese Patent Application Laid-Open No. 10-69599 (hereinbelow referred to as Citation 2), as well as in the Applicant's co-pending Japanese Patent Application No. 9-27960 (hereinbelow referred to as Citation 3), Japanese Patent Application No. 9-36324 (hereinbelow referred to as Citation 4), and Japanese Patent Application No. 9-86612 (hereinbelow referred to as Citation 5).
According to the system disclosed in Citation 1, there is provided a predetermined operation whereby, in the event of a risk of collision between any of a plurality of unmanned vehicles, the unmanned vehicles at risk for collision may exchange necessary information with each other via communication devices so as to avoid collision.
According to the system disclosed in Citation 2, lane-change sensors provided with optical means are embedded in the road surface of a highway at the boundary between an automatically guided vehicle lane L
1
and an adjacent travel lane L
2
, so that in the event that a vehicle traveling in lane L
2
should enter lane L
1
(i.e., make a lane change) the control system on the basis of signals from the lane-change sensors, will control any automatically guided vehicle traveling behind the vehicle which has entered the lane in such a way as to provide greater distance between vehicles.
According to the system disclosed in Citation 3, long-range (e.g. VHF) communication devices are provided to a plurality of unmanned vehicles and to a monitoring station, the plurality of unmanned vehicles being provided also with short-range (e.g. SS transmission) communication devices, whereby travel instruction data may be transmitted from the monitoring station to the unmanned vehicles via the long-range communication devices, while the unmanned vehicles may exchange vehicle position data among themselves using the short-range communication devices, thereby allowing for monitoring of positional relationships among the vehicles.
According to the system disclosed in Citation 4, an arranged route of travel is divided into a plurality of segments, and a plurality of vehicles, via communication devices provided thereto, transmit to a monitoring station vehicle position data and the like which has been ascertained by position-measuring devices, transmitting this information each time that a vehicle reaches a segment boundary on an arranged route of travel, whereby the monitoring station may ascertain positional relationships among a plurality of vehicles in each segment, and monitor and control the plurality of vehicles with reference to these positional relationships. In order to prevent interference between manned vehicles and unmanned vehicles, for example, the monitoring station will forcibly halt or decelerate a manned vehicle in the event that the manned vehicle does not obey instruction data (data instructing deceleration, a stop, etc.).
According to the system disclosed in Citation 5, vehicle position data is exchanged via communication devices among a plurality of vehicles, for example, manned vehicles and unmanned vehicles, whereby vehicles, on the basis of vehicle position data for other vehicles, perform control so as to prevent interference among vehicles. In this system, in the event of a determination, made on the basis of vehicle position data exchanged between a manned vehicle and an unmanned vehicle, that the vehicles are interfering with one another, control is effected such that the unmanned vehicle comes to an emergency stop while the manned vehicle is decelerated so as to prevent interference among the vehicles.
The systems disclosed in Citation 1 and Citation 3, however, are directed to preventing interference among unmanned vehicles and make no mention whatsoever of preventing interference among manned vehicles and unmanned vehicles.
The system disclosed in Citation 2 employs a stationary installation (i.e. a highway), detecting vehicles entering the lane traveled by automatically guided vehicles and decelerating the automatically guided vehicles. However, the use of a stationary installation entails numerous initial outlays associated with construction of the installation. Further, it is difficult to adapt such a system to a mine, where travel routes change frequently.
While it is possible to embed lane change sensors along the course of an asphalt highway, this approach is not feasible for mine roads, which are maintained by graders.
Specifically, the off-road dump trucks used in mining operations, even those of ordinary size, have vehicle weights of several hundred tons when loaded, while larger vehicles can weigh in at close to 700 tons. Even if lane change sensors were embedded in an asphalt travel path (roadway), the asphalt road would not be able to bear the weight of the vehicle. Also, lane change sensors embedded in the roadway would be crushed by the weight of the vehicle.
Accordingly, it is common practice in milling operations and the like to pave roads with gravel. Assuming that lane change sensors were embedded in road paved with gravel or the like, the need to periodically maintain the pavement through grading poses the problem of equipment, such as lane change sensors, embedded in the pavement being crushed during the grading operation.
Further, lane change sensors can detect a vehicle only after it has entered a lane; while this presents no particular problem in the case of highways and other roadways with minimal cross-traffic, in mining operations, which typically have a complex web of routes, there exists a risk, depending on the condition of travel of a vehicle, that the vehicle will be detected only as it approaches an intersection. This means that where the risk exists that traveling vehicles will interfere (collide) in proximity to an intersection, the delay in control to prevent collision may result in collision of the vehicles.
The system disclosed in Citation 4 assumes travel of manned vehicles over a predetermined course (prearranged travel route) in a manner analogous to unmanned vehicles, with monitoring and control being performed from a central monitoring station, and as such is difficult to implement in situations where the human operator of a vehicle may choose, for example, to make a U-turn mid-course or otherwise change course from time to time. Further, manned vehicles are driven by human operators, and some operators may find disagreeable the approach of travel to a predetermined destination selected in accordance with the operation. Forcible introduction of a system that ignores operator preference will have a negative impact on operations.
According to the system disclosed in Citation 5, interference among vehicles may be prevented even in situations where manned vehicles coexist with unmanned vehicles. However, depending on communication conditions, it may occur that an unmanned vehicle cannot receive vehicle position data from a manned vehicle; in such instances, there exists the risk of a delay in the determination process for interference between vehicles, resulting in an inability exercise proper control to prevent interference between vehicles.
For manned vehicles, in instances of interference between vehicles, while a Reduce Speed command sent from the unm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle interference prevention device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle interference prevention device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle interference prevention device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3024032

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.